{"title":"Object Detection Approach for Robot Grasp Detection","authors":"H. Karaoğuz, P. Jensfelt","doi":"10.1109/ICRA.2019.8793751","DOIUrl":null,"url":null,"abstract":"In this paper, we focus on the robot grasping problem with parallel grippers using image data. For this task, we propose and implement an end-to-end approach. In order to detect the good grasping poses for a parallel gripper from RGB images, we have employed transfer learning for a Convolutional Neural Network (CNN) based object detection architecture. Our obtained results show that, the adapted network either outperforms or is on-par with the state-of-the art methods on a benchmark dataset. We also performed grasping experiments on a real robot platform to evaluate our method’s real world performance.","PeriodicalId":6730,"journal":{"name":"2019 International Conference on Robotics and Automation (ICRA)","volume":"6 1","pages":"4953-4959"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"57","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Robotics and Automation (ICRA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRA.2019.8793751","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 57
Abstract
In this paper, we focus on the robot grasping problem with parallel grippers using image data. For this task, we propose and implement an end-to-end approach. In order to detect the good grasping poses for a parallel gripper from RGB images, we have employed transfer learning for a Convolutional Neural Network (CNN) based object detection architecture. Our obtained results show that, the adapted network either outperforms or is on-par with the state-of-the art methods on a benchmark dataset. We also performed grasping experiments on a real robot platform to evaluate our method’s real world performance.