Magnetic and non-magnetic AGB mixing for s-processing

M. Busso
{"title":"Magnetic and non-magnetic AGB mixing for s-processing","authors":"M. Busso","doi":"10.1051/epjconf/202327501005","DOIUrl":null,"url":null,"abstract":"I outline a few features of recent models for the formation of the neutron source 13C(α,n)16O in low mass stars (1 ≲ M/M⊙ ≲ 3, LMS ) ascendingfor the second time the Red Giant Branch, generally called Asymptotic Giant Branch, or AGB stars. I also briefly outline the nucleosynthesis results obtained trough them. The mentioned models consider the physical structure below the frequent downward extensions of the convective envelope into the He-intershell (the so-called third dredge-up or TDU episodes). There, the conditions are such that the occurrence of further mixing is strongly facilitated, due to the minimal temperature gradient. A way to induce proton mixing from the envelope (certainly not the only one) arises whenever the ambient magnetic fields expected for LMS promote the buoyancy of strongly magnetized flux tubes. I review some characteristics of the ensuing mixing episodes, mentioning how different hydrodynamical processes might yield similar effects, thus encouraging stellar physicists to verify in more detail this possibility.","PeriodicalId":11731,"journal":{"name":"EPJ Web of Conferences","volume":"28 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EPJ Web of Conferences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/epjconf/202327501005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

I outline a few features of recent models for the formation of the neutron source 13C(α,n)16O in low mass stars (1 ≲ M/M⊙ ≲ 3, LMS ) ascendingfor the second time the Red Giant Branch, generally called Asymptotic Giant Branch, or AGB stars. I also briefly outline the nucleosynthesis results obtained trough them. The mentioned models consider the physical structure below the frequent downward extensions of the convective envelope into the He-intershell (the so-called third dredge-up or TDU episodes). There, the conditions are such that the occurrence of further mixing is strongly facilitated, due to the minimal temperature gradient. A way to induce proton mixing from the envelope (certainly not the only one) arises whenever the ambient magnetic fields expected for LMS promote the buoyancy of strongly magnetized flux tubes. I review some characteristics of the ensuing mixing episodes, mentioning how different hydrodynamical processes might yield similar effects, thus encouraging stellar physicists to verify in more detail this possibility.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于s加工的磁性和非磁性AGB混合
我概述了中子源13C(α,n)16O在低质量恒星(1 > M/M⊙> 3,LMS)第二次上升的红巨星分支(通常称为渐近巨星分支,或AGB恒星中形成的最新模型的一些特征。我还简要概述了通过它们获得的核合成结果。上述模型考虑了对流包络层频繁向下延伸进入He-intershell(所谓的第三次挖掘或TDU事件)以下的物理结构。在这种情况下,由于温度梯度最小,进一步混合的发生非常容易。每当LMS所期望的环境磁场促进强磁化磁通管的浮力时,就会出现一种从包络层诱导质子混合的方法(当然不是唯一的方法)。我回顾了随后的混合事件的一些特征,提到不同的流体动力过程如何产生相似的效果,从而鼓励恒星物理学家更详细地验证这种可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Heavy flavor and quarkonia results from the PHENIX experiment The ups and downs of inferred cosmological lithium Repurposing of the Run 2 CMS High Level Trigger Infrastructure as a Cloud Resource for Offline Computing HPC resources for CMS offline computing: An integration and scalability challenge for the Submission Infrastructure Adoption of a token-based authentication model for the CMS Submission Infrastructure
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1