Comparative evaluation of deep learning workloads for leadership-class systems

Junqi Yin, Aristeidis Tsaris, Sajal Dash, Ross Miller, Feiyi Wang, Mallikarjun (Arjun) Shankar
{"title":"Comparative evaluation of deep learning workloads for leadership-class systems","authors":"Junqi Yin,&nbsp;Aristeidis Tsaris,&nbsp;Sajal Dash,&nbsp;Ross Miller,&nbsp;Feiyi Wang,&nbsp;Mallikarjun (Arjun) Shankar","doi":"10.1016/j.tbench.2021.100005","DOIUrl":null,"url":null,"abstract":"<div><p>Deep learning (DL) workloads and their performance at scale are becoming important factors to consider as we design, develop and deploy next-generation high-performance computing systems. Since DL applications rely heavily on DL frameworks and underlying compute (CPU/GPU) stacks, it is essential to gain a holistic understanding from compute kernels, models, and frameworks of popular DL stacks, and to assess their impact on science-driven, mission-critical applications. At Oak Ridge Leadership Computing Facility (OLCF), we employ a set of micro and macro DL benchmarks established through the Collaboration of Oak Ridge, Argonne, and Livermore (CORAL) to evaluate the AI readiness of our next-generation supercomputers. In this paper, we present our early observations and performance benchmark comparisons between the Nvidia V100 based Summit system with its CUDA stack and an AMD MI100 based testbed system with its ROCm stack. We take a layered perspective on DL benchmarking and point to opportunities for future optimizations in the technologies that we consider.</p></div>","PeriodicalId":100155,"journal":{"name":"BenchCouncil Transactions on Benchmarks, Standards and Evaluations","volume":"1 1","pages":"Article 100005"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772485921000053/pdfft?md5=7170efb2f45da50210176495650c4232&pid=1-s2.0-S2772485921000053-main.pdf","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BenchCouncil Transactions on Benchmarks, Standards and Evaluations","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772485921000053","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Deep learning (DL) workloads and their performance at scale are becoming important factors to consider as we design, develop and deploy next-generation high-performance computing systems. Since DL applications rely heavily on DL frameworks and underlying compute (CPU/GPU) stacks, it is essential to gain a holistic understanding from compute kernels, models, and frameworks of popular DL stacks, and to assess their impact on science-driven, mission-critical applications. At Oak Ridge Leadership Computing Facility (OLCF), we employ a set of micro and macro DL benchmarks established through the Collaboration of Oak Ridge, Argonne, and Livermore (CORAL) to evaluate the AI readiness of our next-generation supercomputers. In this paper, we present our early observations and performance benchmark comparisons between the Nvidia V100 based Summit system with its CUDA stack and an AMD MI100 based testbed system with its ROCm stack. We take a layered perspective on DL benchmarking and point to opportunities for future optimizations in the technologies that we consider.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
领导力类系统深度学习工作量的比较评估
深度学习(DL)工作负载及其大规模性能正在成为我们设计、开发和部署下一代高性能计算系统时需要考虑的重要因素。由于深度学习应用程序严重依赖于深度学习框架和底层计算(CPU/GPU)堆栈,因此有必要从流行的深度学习堆栈的计算内核、模型和框架中获得全面的理解,并评估它们对科学驱动的关键任务应用程序的影响。在橡树岭领导计算设施(OLCF),我们采用了一套由橡树岭、阿贡和利弗莫尔(CORAL)合作建立的微观和宏观深度学习基准来评估我们下一代超级计算机的人工智能准备情况。在本文中,我们介绍了基于Nvidia V100的Summit系统及其CUDA堆栈与基于AMD MI100的测试平台系统及其ROCm堆栈之间的早期观察和性能基准比较。我们对深度学习基准测试采取了分层的视角,并指出了我们所考虑的技术中未来优化的机会。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.80
自引率
0.00%
发文量
0
期刊最新文献
Evaluation of mechanical properties of natural fiber based polymer composite Could bibliometrics reveal top science and technology achievements and researchers? The case for evaluatology-based science and technology evaluation Table of Contents BinCodex: A comprehensive and multi-level dataset for evaluating binary code similarity detection techniques Analyzing the impact of opportunistic maintenance optimization on manufacturing industries in Bangladesh: An empirical study
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1