A. Morsy, H. Kamal, Naglaa M Walley, M. Rageh, Mohamed M Badewy
{"title":"Uranium Removal from Its Liquid Waste Using Chemically Treated Rice Husk","authors":"A. Morsy, H. Kamal, Naglaa M Walley, M. Rageh, Mohamed M Badewy","doi":"10.4103/2423-7752.191401","DOIUrl":null,"url":null,"abstract":"Introduction: In this study, rice husk (RH) was modified by HCl and HNO3, and the activated RHs were used as adsorbents for removal of UO22+ ions from aqueous solutions through batch equilibrium technique. Materials and methods: The influence of pH, equilibrium time, temperature, adsorbent dosage, and initial uranium concentration on adsorption percent was investigated. Results: Obtained results declared that the pH of aqueous solutions had affected UO22+ ions removal, which was indicated by the increased removal efficiency with increasing solution pH till pH 3. Conclusion: Experimental data were verified with Langmuir and other isotherms and were found to be well fitting with Langmuir isotherm models. A feasibility study for the whole process was performed.","PeriodicalId":15578,"journal":{"name":"Journal of Earth, Environment and Health Sciences","volume":"73 1","pages":"41 - 49"},"PeriodicalIF":0.0000,"publicationDate":"2016-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Earth, Environment and Health Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4103/2423-7752.191401","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Introduction: In this study, rice husk (RH) was modified by HCl and HNO3, and the activated RHs were used as adsorbents for removal of UO22+ ions from aqueous solutions through batch equilibrium technique. Materials and methods: The influence of pH, equilibrium time, temperature, adsorbent dosage, and initial uranium concentration on adsorption percent was investigated. Results: Obtained results declared that the pH of aqueous solutions had affected UO22+ ions removal, which was indicated by the increased removal efficiency with increasing solution pH till pH 3. Conclusion: Experimental data were verified with Langmuir and other isotherms and were found to be well fitting with Langmuir isotherm models. A feasibility study for the whole process was performed.