Transitions, Losses, and Re-parameterizations: Elements of Prediction Games.

Kamalaruban Parameswaran
{"title":"Transitions, Losses, and Re-parameterizations: Elements of Prediction Games.","authors":"Kamalaruban Parameswaran","doi":"10.25911/5D723BC67A01E","DOIUrl":null,"url":null,"abstract":"This thesis presents some geometric insights into three different types of two player prediction games -- namely general learning task, prediction with expert advice, and online convex optimization. These games differ in the nature of the opponent (stochastic, adversarial, or intermediate), the order of the players' move, and the utility function. The insights shed some light on the understanding of the intrinsic barriers of the prediction problems and the design of computationally efficient learning algorithms with strong theoretical guarantees (such as generalizability, statistical consistency, and constant regret etc.).","PeriodicalId":8468,"journal":{"name":"arXiv: Learning","volume":"55 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Learning","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.25911/5D723BC67A01E","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This thesis presents some geometric insights into three different types of two player prediction games -- namely general learning task, prediction with expert advice, and online convex optimization. These games differ in the nature of the opponent (stochastic, adversarial, or intermediate), the order of the players' move, and the utility function. The insights shed some light on the understanding of the intrinsic barriers of the prediction problems and the design of computationally efficient learning algorithms with strong theoretical guarantees (such as generalizability, statistical consistency, and constant regret etc.).
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
过渡、损失和重新参数化:预测游戏的元素
本文对三种不同类型的双人预测游戏(即一般学习任务、专家建议预测和在线凸优化)提出了一些几何见解。这些游戏的不同之处在于对手的性质(随机、对抗或中间)、玩家的移动顺序和效用函数。这些见解有助于理解预测问题的内在障碍,以及设计具有强大理论保证(如泛化性、统计一致性和持续遗憾等)的计算效率学习算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
High dimensional robust M-estimation : arbitrary corruption and heavy tails Boosting share routing for multi-task learning. Clustering Residential Electricity Consumption Data to Create Archetypes that Capture Household Behaviour in South Africa Synthetic Observational Health Data with GANs: from slow adoption to a boom in medical research and ultimately digital twins? A Review of Privacy-Preserving Federated Learning for the Internet-of-Things
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1