V. Samarkin, A. Alexandrov, I. Galaktionov, A. Kudryashov, A. Nikitin, A. Rukosuev, V. Toporovsky, Y. Sheldakova
{"title":"Large-aperture adaptive optical system for correcting wavefront distortions of a petawatt Ti : sapphire laser beam","authors":"V. Samarkin, A. Alexandrov, I. Galaktionov, A. Kudryashov, A. Nikitin, A. Rukosuev, V. Toporovsky, Y. Sheldakova","doi":"10.1070/QEL17989","DOIUrl":null,"url":null,"abstract":"This paper reports a large-aperture adaptive optical system with a bimorph deformable mirror and Shack – Hartmann wavefront sensor for aberration correction and beam focusing improvement in state-of-the-art petawatt Ti : sapphire lasers. We consider methods for providing feedback to the wavefront sensor and obtaining an objective wavefront that optimises beam focusing onto a target. The use of an adaptive system with a controlled 127-channel 320-mm-aperture mirror in a Ti : sapphire laser with an output power of 4.2 PW has made it possible to obtain a record high laser beam intensity: 1.1 × 1023 W cm−2.","PeriodicalId":20775,"journal":{"name":"Quantum Electronics","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2022-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Electronics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1070/QEL17989","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 6
Abstract
This paper reports a large-aperture adaptive optical system with a bimorph deformable mirror and Shack – Hartmann wavefront sensor for aberration correction and beam focusing improvement in state-of-the-art petawatt Ti : sapphire lasers. We consider methods for providing feedback to the wavefront sensor and obtaining an objective wavefront that optimises beam focusing onto a target. The use of an adaptive system with a controlled 127-channel 320-mm-aperture mirror in a Ti : sapphire laser with an output power of 4.2 PW has made it possible to obtain a record high laser beam intensity: 1.1 × 1023 W cm−2.
期刊介绍:
Quantum Electronics covers the following principal headings
Letters
Lasers
Active Media
Interaction of Laser Radiation with Matter
Laser Plasma
Nonlinear Optical Phenomena
Nanotechnologies
Quantum Electronic Devices
Optical Processing of Information
Fiber and Integrated Optics
Laser Applications in Technology and Metrology, Biology and Medicine.