{"title":"Nature-inspired Material – A Step Ahead in Dental Materials","authors":"Tomasz “Tomi” Kupka","doi":"10.21467/ias.12.1.31-46","DOIUrl":null,"url":null,"abstract":"Glass-ionomer is first choice widely used biomaterial in caries disease. The evolution of dental material science includes insertion of new components into conventional material. A literature-based review outline of biomaterials for dental restorations development was presented in nature-inspired context. This article is a tribute to the entire research community, for all listed and unlisted, involved throughout the ages in the science of dental materials with the key inventions and milestones for humanity well-being on Earth. Results. Since the Neolithic, the human mind has been seeking for a matter to replace missing tooth tissue imitating/mimicking natural organ in appearance and function, what we call biomimetic/biomimicry approach. However, this restoring philosophy does not refer to the natural composition of hard tooth tissues. Possibly, there is another one concept of drawing inspiration from nature for the design of future dental materials. Nature-inspired synthesis goes beyond aesthetic/and anatomical similarities, and delves into the mechanistic, physico-chemical features or structure-phase of natural systems. In this context, pure glass-ionomer might be taken into consideration as a starting material. However, the search for synthetic nature-inspired mesomaterial with a structural-phase composition analogous to enamel/dentine/cementum, transforming into the original host hard tissues, should focus on elongated hydroxyapatite dipole control for creating and organizing into enamel prisms, and the interwoven alignment of perpendicular clusters/bunches in a picket-fence resembling three-dimensional order. The results of previous studies confirming the possibility of the formation of apatite-enamel-like tissue in glass-ionomer are promising. The concept of inclusion of calcium phosphate nanocrystals/substitution of glass filler seems to be forward-looking. The future role of polyelectrolyte organic matrix based on synthetic tooth polypeptides crosslinked with modified analogues of natural adhesives is still undiscovered.","PeriodicalId":52800,"journal":{"name":"International Journal of Science Annals","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Science Annals","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21467/ias.12.1.31-46","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Glass-ionomer is first choice widely used biomaterial in caries disease. The evolution of dental material science includes insertion of new components into conventional material. A literature-based review outline of biomaterials for dental restorations development was presented in nature-inspired context. This article is a tribute to the entire research community, for all listed and unlisted, involved throughout the ages in the science of dental materials with the key inventions and milestones for humanity well-being on Earth. Results. Since the Neolithic, the human mind has been seeking for a matter to replace missing tooth tissue imitating/mimicking natural organ in appearance and function, what we call biomimetic/biomimicry approach. However, this restoring philosophy does not refer to the natural composition of hard tooth tissues. Possibly, there is another one concept of drawing inspiration from nature for the design of future dental materials. Nature-inspired synthesis goes beyond aesthetic/and anatomical similarities, and delves into the mechanistic, physico-chemical features or structure-phase of natural systems. In this context, pure glass-ionomer might be taken into consideration as a starting material. However, the search for synthetic nature-inspired mesomaterial with a structural-phase composition analogous to enamel/dentine/cementum, transforming into the original host hard tissues, should focus on elongated hydroxyapatite dipole control for creating and organizing into enamel prisms, and the interwoven alignment of perpendicular clusters/bunches in a picket-fence resembling three-dimensional order. The results of previous studies confirming the possibility of the formation of apatite-enamel-like tissue in glass-ionomer are promising. The concept of inclusion of calcium phosphate nanocrystals/substitution of glass filler seems to be forward-looking. The future role of polyelectrolyte organic matrix based on synthetic tooth polypeptides crosslinked with modified analogues of natural adhesives is still undiscovered.