Projection Free Dynamic Online Learning

Deepak S. Kalhan, A. S. Bedi, Alec Koppel, K. Rajawat, Abhishek K. Gupta, Adrish Banerjee
{"title":"Projection Free Dynamic Online Learning","authors":"Deepak S. Kalhan, A. S. Bedi, Alec Koppel, K. Rajawat, Abhishek K. Gupta, Adrish Banerjee","doi":"10.1109/ICASSP40776.2020.9053771","DOIUrl":null,"url":null,"abstract":"Projection based algorithms are popular in the literature for online convex optimization with convex constraints and the projection step results in a bottleneck for the practical implementation of the algorithms. To avoid this bottleneck, we propose a projection-free scheme based on Frank-Wolfe: where instead of online gradient steps, we use steps that are collinear with the gradient but guaranteed to be feasible. We establish performance in terms of dynamic regret, which quantifies cost accumulation as compared with the optimal at each individual time slot. Specifically, for convex losses, we establish $\\mathcal{O}\\left( {{T^{1/2}}} \\right)$ dynamic regret up to metrics of non-stationarity. We relax the algorithm’s required information to only noisy gradient estimates, i.e., partial feedback and derived the dynamic regret bounds. Experiments on matrix completion problem and background separation in video demonstrate favorable performance of the proposed scheme.","PeriodicalId":13127,"journal":{"name":"ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"22 1","pages":"3957-3961"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP40776.2020.9053771","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Projection based algorithms are popular in the literature for online convex optimization with convex constraints and the projection step results in a bottleneck for the practical implementation of the algorithms. To avoid this bottleneck, we propose a projection-free scheme based on Frank-Wolfe: where instead of online gradient steps, we use steps that are collinear with the gradient but guaranteed to be feasible. We establish performance in terms of dynamic regret, which quantifies cost accumulation as compared with the optimal at each individual time slot. Specifically, for convex losses, we establish $\mathcal{O}\left( {{T^{1/2}}} \right)$ dynamic regret up to metrics of non-stationarity. We relax the algorithm’s required information to only noisy gradient estimates, i.e., partial feedback and derived the dynamic regret bounds. Experiments on matrix completion problem and background separation in video demonstrate favorable performance of the proposed scheme.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
投影免费动态在线学习
基于投影的算法在具有凸约束的在线凸优化中很受欢迎,但投影步骤导致了算法实际实现的瓶颈。为了避免这一瓶颈,我们提出了一种基于Frank-Wolfe的无投影方案:我们使用与梯度共线但保证可行的步骤来代替在线梯度步骤。我们根据动态后悔来建立性能,它量化了与每个时间段的最优相比的成本积累。具体来说,对于凸损失,我们建立了$\mathcal{O}\left({{T^{1/2}}} \right)$动态遗憾,直到非平稳度量。我们将算法所需的信息放宽到只有有噪声的梯度估计,即部分反馈,并推导出动态后悔界。对矩阵补全问题和视频背景分离的实验证明了该方法的良好性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Theoretical Analysis of Multi-Carrier Agile Phased Array Radar Paco and Paco-Dct: Patch Consensus and Its Application To Inpainting Array-Geometry-Aware Spatial Active Noise Control Based on Direction-of-Arrival Weighting Neural Network Wiretap Code Design for Multi-Mode Fiber Optical Channels Distributed Non-Orthogonal Pilot Design for Multi-Cell Massive Mimo Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1