{"title":"Voltage gated sodium channels in cancer and their potential mechanisms of action.","authors":"Madeline Angus, Peter Ruben","doi":"10.1080/19336950.2019.1666455","DOIUrl":null,"url":null,"abstract":"<p><p>Voltage gated sodium channels (VGSC) are implicated in cancer cell invasion and metastasis. However, the mechanism by which VGSC increase cell invasiveness and probability of metastasis is still unknown. In this review we outline lesser known functions of VGSC outside of action potential propagation, and the current understanding of the effects of VGSC in cancer. Finally, we discuss possible downstream effects of VGSC activation in cancer cells. After extensive review of the literature, the most likely role of VGSC in cancer is in the invadopodia, the leading edge of metastatic cancer cells. Sodium gradients are used to drive many biological processes in the body, and invadopodia may be similar. The function of the sodium hydrogen exchanger (NHE) and sodium calcium exchanger (NCX) are driven by sodium gradients. Voltage gated calcium channels, activated by membrane depolarization, are also capable of becoming activated in response to VGSC activity. Changes to hydrogen ion exchange or calcium handling have functional consequences for invadopodia and would explain the relationship between VGSC expression and invasiveness of cancer cells.</p>","PeriodicalId":37894,"journal":{"name":"IFAC-PapersOnLine","volume":"51 1","pages":"400-409"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6768049/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IFAC-PapersOnLine","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/19336950.2019.1666455","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0
Abstract
Voltage gated sodium channels (VGSC) are implicated in cancer cell invasion and metastasis. However, the mechanism by which VGSC increase cell invasiveness and probability of metastasis is still unknown. In this review we outline lesser known functions of VGSC outside of action potential propagation, and the current understanding of the effects of VGSC in cancer. Finally, we discuss possible downstream effects of VGSC activation in cancer cells. After extensive review of the literature, the most likely role of VGSC in cancer is in the invadopodia, the leading edge of metastatic cancer cells. Sodium gradients are used to drive many biological processes in the body, and invadopodia may be similar. The function of the sodium hydrogen exchanger (NHE) and sodium calcium exchanger (NCX) are driven by sodium gradients. Voltage gated calcium channels, activated by membrane depolarization, are also capable of becoming activated in response to VGSC activity. Changes to hydrogen ion exchange or calcium handling have functional consequences for invadopodia and would explain the relationship between VGSC expression and invasiveness of cancer cells.
期刊介绍:
All papers from IFAC meetings are published, in partnership with Elsevier, the IFAC Publisher, in theIFAC-PapersOnLine proceedings series hosted at the ScienceDirect web service. This series includes papers previously published in the IFAC website.The main features of the IFAC-PapersOnLine series are: -Online archive including papers from IFAC Symposia, Congresses, Conferences, and most Workshops. -All papers accepted at the meeting are published in PDF format - searchable and citable. -All papers published on the web site can be cited using the IFAC PapersOnLine ISSN and the individual paper DOI (Digital Object Identifier). The site is Open Access in nature - no charge is made to individuals for reading or downloading. Copyright of all papers belongs to IFAC and must be referenced if derivative journal papers are produced from the conference papers. All papers published in IFAC-PapersOnLine have undergone a peer review selection process according to the IFAC rules.