Understanding Metal Propagation in Solid Electrolytes Due to Mixed Ionic–Electronic Conduction

Qingsong Tu, Tan Shi, S. Chakravarthy, G. Ceder
{"title":"Understanding Metal Propagation in Solid Electrolytes Due to Mixed Ionic–Electronic Conduction","authors":"Qingsong Tu, Tan Shi, S. Chakravarthy, G. Ceder","doi":"10.2139/ssrn.3834690","DOIUrl":null,"url":null,"abstract":"Summary Metal penetration into a solid electrolyte (SE) is one of the critical problems impeding the practical application of solid-state batteries. In this study, we investigate the conditions under which electronic conductivity of the SE can lead to metal deposition and fracture within the SE. Three different stages for void filling (metal plating initiation, metal growth, and metal compression) in the SE are identified. We show that a micron-size isolated void in the SE near the anode can be quickly filled in by metal and fractured when the developed pressure in the void grows larger than the maximum pressure the SE material can sustain. We find that the anode voltage and applied current density play a significant role in determining the vulnerability to metal deposition. We discuss several strategies to prevent electronic conductivity-driven metal propagation in electrolytes that are not fully dense, including the densified layers between the anode and SE.","PeriodicalId":10639,"journal":{"name":"Computational Materials Science eJournal","volume":"72 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Materials Science eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3834690","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

Summary Metal penetration into a solid electrolyte (SE) is one of the critical problems impeding the practical application of solid-state batteries. In this study, we investigate the conditions under which electronic conductivity of the SE can lead to metal deposition and fracture within the SE. Three different stages for void filling (metal plating initiation, metal growth, and metal compression) in the SE are identified. We show that a micron-size isolated void in the SE near the anode can be quickly filled in by metal and fractured when the developed pressure in the void grows larger than the maximum pressure the SE material can sustain. We find that the anode voltage and applied current density play a significant role in determining the vulnerability to metal deposition. We discuss several strategies to prevent electronic conductivity-driven metal propagation in electrolytes that are not fully dense, including the densified layers between the anode and SE.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
了解金属在固体电解质中由于离子-电子混合传导的传播
金属在固体电解质中的渗透是阻碍固态电池实际应用的关键问题之一。在这项研究中,我们研究了SE的电子导电性导致SE内金属沉积和断裂的条件。在SE中确定了三个不同的空隙填充阶段(金属镀层起始、金属生长和金属压缩)。我们发现,在靠近阳极的SE中,一个微米大小的孤立空洞可以被金属快速填充并破裂,当空洞中的发展压力大于SE材料所能承受的最大压力时。我们发现阳极电压和外加电流密度在决定金属沉积易损性方面起着重要作用。我们讨论了几种防止电子电导率驱动的金属在不完全致密的电解质中传播的策略,包括阳极和SE之间的致密层。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Metal-Graphene Hybrid Terahertz Metasurfaces Based on Bound States in the Continuum (Bic) and Quasi-Bic for Dynamic Near-Field Imaging Rapid Nucleation and Growth of Tetrafluoroethane Hydrate in the Cyclic Process of Boiling–Condensation A Unified Maximum Entropy Principle Approach for a Large Class of Routing Problems Fabrication of a Novel Surface Molecularly Imprinted Polymer Based on Zeolitic Imidazolate Framework-7 for Selective Extraction of Phthalates Measuring Oxygen Solubility in Ni Grains and Boundaries after Oxidation Using Atom Probe Tomography
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1