A rapid anomaly detection technique for big data curation

Korn Poonsirivong, C. Jittawiriyanukoon
{"title":"A rapid anomaly detection technique for big data curation","authors":"Korn Poonsirivong, C. Jittawiriyanukoon","doi":"10.1109/JCSSE.2017.8025900","DOIUrl":null,"url":null,"abstract":"Anomaly detection (outlier) using simulation helps us analyze the anomaly instances from big data source. As the hasty explosion of today's data stream, outlier detection technique will be an analytical tool to be employed for evaluating massive unstructured datasets. In order to speed-up the processing time to handle enormous datasets, this research will conduct experiments of advanced distant-based outlier detection algorithms to investigate the most effective algorithms using MOA. The algorithms used in this study are Continuous Outlie Detection (COD), Micro-Cluster based COD or MCOD, and STream OutlierR Miner (STORM). The results demonstrate MCOD algorithm can outperform other two algorithms in terms of processing time and accurate anomalies.","PeriodicalId":6460,"journal":{"name":"2017 14th International Joint Conference on Computer Science and Software Engineering (JCSSE)","volume":"47 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 14th International Joint Conference on Computer Science and Software Engineering (JCSSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/JCSSE.2017.8025900","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Anomaly detection (outlier) using simulation helps us analyze the anomaly instances from big data source. As the hasty explosion of today's data stream, outlier detection technique will be an analytical tool to be employed for evaluating massive unstructured datasets. In order to speed-up the processing time to handle enormous datasets, this research will conduct experiments of advanced distant-based outlier detection algorithms to investigate the most effective algorithms using MOA. The algorithms used in this study are Continuous Outlie Detection (COD), Micro-Cluster based COD or MCOD, and STream OutlierR Miner (STORM). The results demonstrate MCOD algorithm can outperform other two algorithms in terms of processing time and accurate anomalies.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
面向大数据管理的快速异常检测技术
利用仿真方法进行异常检测(outlier),有助于我们从大数据源中分析异常实例。随着当今数据流的快速爆炸,异常值检测技术将成为评估大量非结构化数据集的一种分析工具。为了加快处理庞大数据集的处理时间,本研究将对先进的基于距离的离群点检测算法进行实验,探索利用MOA最有效的算法。本研究中使用的算法是连续离群检测(COD)、基于微集群的COD或MCOD和STream OutlierR Miner (STORM)。结果表明,MCOD算法在处理时间和异常精度方面优于其他两种算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Isolate-Set-Based In-Memory Parallel Subgraph Matching Framework A Fast Attitude Estimation Method Using Homography Matrix IOT for smart farm: A case study of the Lingzhi mushroom farm at Maejo University Analyzing user reviews in Thai language toward aspects in mobile applications Front-rear crossover: A new crossover technique for solving a trap problem
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1