High fitness population (HFP) with GA solution for solving unit commitment

A. S. Rajawat, M. Sharma, V. Sharma
{"title":"High fitness population (HFP) with GA solution for solving unit commitment","authors":"A. S. Rajawat, M. Sharma, V. Sharma","doi":"10.1109/COMPTELIX.2017.8003953","DOIUrl":null,"url":null,"abstract":"This paper presents an improved solution to optimal unit commitment (UC) by seeding best initial high fitness population (HFP) near or equal to global optimum solution to Genetic algorithm (GA). To direct the limited minimization option left in HFP in better way, easy GA mutation scheme is proposed that produces constrained satisfied populations, handle typical spinning reserve/time constraints and increases diversity option for GA to work near global optimum. The proposed algorithm performance is verified for systems of one-day scheduling period for 10–100 generating units. The test results reveal solution very near or close to optimum value achieved in initial population before the GA iteration starts. Result demonstrate the superiority of proposed scheme in term of number of iteration, cost and computation time then any other conventional methods / other computing techniques.","PeriodicalId":6917,"journal":{"name":"2017 International Conference on Computer, Communications and Electronics (Comptelix)","volume":"177 1","pages":"140-145"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on Computer, Communications and Electronics (Comptelix)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/COMPTELIX.2017.8003953","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents an improved solution to optimal unit commitment (UC) by seeding best initial high fitness population (HFP) near or equal to global optimum solution to Genetic algorithm (GA). To direct the limited minimization option left in HFP in better way, easy GA mutation scheme is proposed that produces constrained satisfied populations, handle typical spinning reserve/time constraints and increases diversity option for GA to work near global optimum. The proposed algorithm performance is verified for systems of one-day scheduling period for 10–100 generating units. The test results reveal solution very near or close to optimum value achieved in initial population before the GA iteration starts. Result demonstrate the superiority of proposed scheme in term of number of iteration, cost and computation time then any other conventional methods / other computing techniques.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
高适应度群体(HFP)与遗传算法求解单位承诺
本文通过在遗传算法(GA)的全局最优解附近或等于全局最优解处播种最优初始高适应度种群(HFP),提出了一种改进的最优单元承诺(UC)的求解方法。为了更好地指导HFP中剩余的有限最小化选项,提出了一种简单的遗传突变方案,该方案产生有约束的满意种群,处理典型的旋转储备/时间约束,并增加遗传算法的多样性选项,使其接近全局最优。在10-100台机组的1天调度周期系统中验证了算法的性能。测试结果表明,在遗传算法迭代开始之前,解非常接近或接近初始种群所达到的最优值。结果表明,该方案在迭代次数、成本和计算时间等方面优于其他传统方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Classification of mental tasks using S-transform based fractal features Gauge Theory and spontaneous breaking of symmetry in superconductors Stable type-2 fuzzy logic control of TCSC to improve damping of power systems An analysis on broadband SHG using TIR-QPM in a multi-tapered slab of ZnSe in mid-IR region Analytical study of SINR for OFDMA Uplink in presence of Transceiver Phase Noise
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1