Defect states and their electric field-enhanced electron thermal emission in heavily Zr-doped β-Ga2O3 crystals

Rujun Sun, Y. Ooi, A. Bhattacharyya, Muad Saleh, S. Krishnamoorthy, K. Lynn, M. Scarpulla
{"title":"Defect states and their electric field-enhanced electron thermal emission in heavily Zr-doped β-Ga2O3 crystals","authors":"Rujun Sun, Y. Ooi, A. Bhattacharyya, Muad Saleh, S. Krishnamoorthy, K. Lynn, M. Scarpulla","doi":"10.1063/5.0029442","DOIUrl":null,"url":null,"abstract":"Performing deep level transient spectroscopy (DLTS) on Schottky diodes, we investigated defect levels below the conduction band minima (Ec) in Czochralski (CZ) grown unintentionally-doped (UID) and vertical gradient freeze (VGF)-grown Zr-doped beta-Ga2O3 crystals. In UID crystals with an electron concentration of 10^17 cm-3, we observe levels at 0.18 eV and 0.46 eV in addition to the previously reported 0.86 (E2) and 1.03 eV (E3) levels. For 10^18 cm-3 Zr-doped Ga2O3, signatures at 0.30 eV (E15) and 0.71 eV (E16) are present. For the highest Zr doping of 5*10^18 cm-3, we observe only one signature at 0.59 eV. Electric field-enhanced emission rates are demonstrated via increasing the reverse bias during measurement. The 0.86 eV signature in the UID sample displays phonon-assisted tunneling enhanced thermal emission and is consistent with the widely reported E2 (FeGa) defect. The 0.71 eV (E16) signature in the lower-Zr-doped crystal also exhibits phonon-assisted tunneling emission enhancement. Taking into account that the high doping in the Zr-doped diodes also increases the electric field, we propose that the 0.59 eV signature in the highest Zr-doped sample likely corresponds to the 0.71 eV signature in lower-doped samples. Our analysis highlights the importance of testing for and reporting on field-enhanced emission especially the electric field present during DLTS and other characterization experiments on beta-Ga2O3 along with the standard emission energy, cross-section, and lambda-corrected trap density. This is important because of the intended use of beta-Ga2O3 in high-field devices and the many orders of magnitude of possible doping.","PeriodicalId":8467,"journal":{"name":"arXiv: Materials Science","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Materials Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/5.0029442","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Performing deep level transient spectroscopy (DLTS) on Schottky diodes, we investigated defect levels below the conduction band minima (Ec) in Czochralski (CZ) grown unintentionally-doped (UID) and vertical gradient freeze (VGF)-grown Zr-doped beta-Ga2O3 crystals. In UID crystals with an electron concentration of 10^17 cm-3, we observe levels at 0.18 eV and 0.46 eV in addition to the previously reported 0.86 (E2) and 1.03 eV (E3) levels. For 10^18 cm-3 Zr-doped Ga2O3, signatures at 0.30 eV (E15) and 0.71 eV (E16) are present. For the highest Zr doping of 5*10^18 cm-3, we observe only one signature at 0.59 eV. Electric field-enhanced emission rates are demonstrated via increasing the reverse bias during measurement. The 0.86 eV signature in the UID sample displays phonon-assisted tunneling enhanced thermal emission and is consistent with the widely reported E2 (FeGa) defect. The 0.71 eV (E16) signature in the lower-Zr-doped crystal also exhibits phonon-assisted tunneling emission enhancement. Taking into account that the high doping in the Zr-doped diodes also increases the electric field, we propose that the 0.59 eV signature in the highest Zr-doped sample likely corresponds to the 0.71 eV signature in lower-doped samples. Our analysis highlights the importance of testing for and reporting on field-enhanced emission especially the electric field present during DLTS and other characterization experiments on beta-Ga2O3 along with the standard emission energy, cross-section, and lambda-corrected trap density. This is important because of the intended use of beta-Ga2O3 in high-field devices and the many orders of magnitude of possible doping.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
重掺zr β-Ga2O3晶体的缺陷态及其电场增强电子热发射
利用深能级瞬态光谱(DLTS)对肖特基二极管进行了研究,研究了CZ生长的无意掺杂(UID)和VGF生长的掺杂zr - ga2o3晶体中低于导带最小值(Ec)的缺陷水平。在电子浓度为10^17 cm-3的UID晶体中,除了先前报道的0.86 (E2)和1.03 eV (E3)水平外,我们还观察到0.18 eV和0.46 eV的水平。对于10^18 cm-3 zr掺杂的Ga2O3,存在0.30 eV (E15)和0.71 eV (E16)的特征。对于Zr掺杂最高的5*10^18 cm-3,我们只观察到一个0.59 eV的特征。通过在测量过程中增加反向偏置,证明了电场增强的发射率。UID样品的0.86 eV特征显示声子辅助隧穿增强的热发射,与广泛报道的E2 (FeGa)缺陷一致。低zr掺杂晶体的0.71 eV (E16)特征也表现出声子辅助隧穿发射增强。考虑到zr掺杂二极管的高掺杂也增加了电场,我们提出zr掺杂最高的样品中的0.59 eV特征可能对应于低掺杂样品中的0.71 eV特征。我们的分析强调了测试和报告场增强发射的重要性,特别是在DLTS和β - ga2o3的其他表征实验中存在的电场,以及标准发射能量、横截面和lambda校正的陷阱密度。这一点很重要,因为β - ga2o3在高场器件中的预期用途和可能掺杂的许多数量级。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A pathway towards high throughput Quantum Monte Carlo simulations for alloys: A case study of two-dimensional (2D) GaSₓSe₁₋ₓ Data analytics accelerates the experimental discovery of new thermoelectric materials with extremely high figure of merit Thermal laser evaporation of elements from across the periodic table Perpendicular magnetic anisotropy in ultra-thin Cu2Sb-type (Mn–Cr)AlGe films fabricated onto thermally oxidized silicon substrates The Mesoscale Crystallinity of Nacreous Pearls
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1