A predictable storage model for scalable parallel DW

J. Costa, J. Cecílio, P. Martins, P. Furtado
{"title":"A predictable storage model for scalable parallel DW","authors":"J. Costa, J. Cecílio, P. Martins, P. Furtado","doi":"10.1145/2076623.2076628","DOIUrl":null,"url":null,"abstract":"Star schema model, has been widely used as the facto DW storage organization on RDBMS. Business measures are stored in a central fact table along with a set of foreign keys referencing dimension tables. While this storage organization offers a good trade-off between storage size and performance for a single node, it doesn't scale in a predictable manner in shared-nothing parallel architectures. Although fact tables can be linearly partitioned among nodes, the same doesn't apply to dimensions, which unbalances (increases) the dimensions/fact_table size ratio, and consequently introduces limits to the number of parallel nodes. In this paper we propose and evaluate a parallel DW storage model, that overcomes these limitations and deliver optimal speed-up and scale-up capabilities with top efficiency. We use the TPC-H benchmark to evaluate the scalability and efficiency of the proposed model.","PeriodicalId":93615,"journal":{"name":"Proceedings. International Database Engineering and Applications Symposium","volume":"29 1","pages":"26-33"},"PeriodicalIF":0.0000,"publicationDate":"2011-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. International Database Engineering and Applications Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2076623.2076628","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Star schema model, has been widely used as the facto DW storage organization on RDBMS. Business measures are stored in a central fact table along with a set of foreign keys referencing dimension tables. While this storage organization offers a good trade-off between storage size and performance for a single node, it doesn't scale in a predictable manner in shared-nothing parallel architectures. Although fact tables can be linearly partitioned among nodes, the same doesn't apply to dimensions, which unbalances (increases) the dimensions/fact_table size ratio, and consequently introduces limits to the number of parallel nodes. In this paper we propose and evaluate a parallel DW storage model, that overcomes these limitations and deliver optimal speed-up and scale-up capabilities with top efficiency. We use the TPC-H benchmark to evaluate the scalability and efficiency of the proposed model.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
可伸缩并行DW的可预测存储模型
星型模式模型,已被广泛应用于RDBMS的实际数据存储组织。业务度量与一组引用维度表的外键一起存储在一个中央事实表中。虽然这种存储组织在单个节点的存储大小和性能之间提供了很好的权衡,但在无共享的并行体系结构中,它无法以可预测的方式进行扩展。尽管事实表可以在节点之间进行线性分区,但这并不适用于维度,这会使维度/fact_table大小比率失衡(增加),从而限制并行节点的数量。在本文中,我们提出并评估了一个并行DW存储模型,该模型克服了这些限制,并以最高的效率提供了最佳的加速和扩展能力。我们使用TPC-H基准来评估所提出模型的可扩展性和效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A method combining improved Mahalanobis distance and adversarial autoencoder to detect abnormal network traffic Proceedings of the International Database Engineered Applications Symposium Conference, IDEAS 2023, Heraklion, Crete, Greece, May 5-7, 2023 IDEAS'22: International Database Engineered Applications Symposium, Budapest, Hungary, August 22 - 24, 2022 IDEAS 2021: 25th International Database Engineering & Applications Symposium, Montreal, QC, Canada, July 14-16, 2021 IDEAS 2020: 24th International Database Engineering & Applications Symposium, Seoul, Republic of Korea, August 12-14, 2020
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1