Modifying Effect of Polyethylene Fractions of Different Molecular Weights on the Morphology and Properties of Reactor Polymer Compositions Based on Ultrahigh Molecular Weight Polyethylene
S. S. Gostev, E. E. Starchak, T. M. Ushakova, V. G. Grinev, V. G. Krasheninnikov, A. Ya. Gorenberg, D. N. Vtyurina, T. A. Ladygina, L. A. Novokshonova
{"title":"Modifying Effect of Polyethylene Fractions of Different Molecular Weights on the Morphology and Properties of Reactor Polymer Compositions Based on Ultrahigh Molecular Weight Polyethylene","authors":"S. S. Gostev, E. E. Starchak, T. M. Ushakova, V. G. Grinev, V. G. Krasheninnikov, A. Ya. Gorenberg, D. N. Vtyurina, T. A. Ladygina, L. A. Novokshonova","doi":"10.1134/S0965545X23700992","DOIUrl":null,"url":null,"abstract":"<p>Reactor polymer compositions (RPCs) based on UHMWPE with <i>M</i><sub>w</sub> = 1000 kg mol<sup>–1</sup> and low molecular weight HDPE (LMWPE) were studied. Two series of UHMWPE compositions were used to determine the influence of the molecular weight and properties of the LMWPE fraction on the morpho-logy, mechanical and rheological properties of UHMWPE/LMWPE. Сompositions, including from 10 to 80 wt % UHMWPE with <i>M</i><sub>w</sub> = 160 kg mol<sup>–1</sup> (PE-160) were obtained in a two-stage process of ethylene polymerization with a metallocene catalyst. They differed in the order of introduction of PE-160 into UHMWPE (PE-160/UHMWPE and UHMWPE/PE-160). Compositions of UHMWPE and LMWPE with <i>M</i><sub>w</sub> = 48 kg mol<sup>–1</sup> (PE-48/UHMWPE) with PE-48 content from 6 to 30 wt % were synthesized in a single-stage polymerization of ethylene in the presence of a tandem catalyst. A comparison of the shape and size of particles of nascent polymer products was made using the SEM method. The morphology, tensile, dynamic mechanical and rheological properties of RPC have been studied depending on the method of their preparation, the content of the low molecular weight fraction, its molecular weight and physical and mechanical properties. An increase in the proportion of PE-160 and PE-48 in PE-160/UHMWPE and PE‑48/UHMWPE leads to an increase in RPC crystallinity, tensile modulus and dynamic mechanical modulus with significant deviations from the additivity rule.</p>","PeriodicalId":738,"journal":{"name":"Polymer Science, Series A","volume":"65 4","pages":"386 - 395"},"PeriodicalIF":1.0000,"publicationDate":"2023-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer Science, Series A","FirstCategoryId":"1","ListUrlMain":"https://link.springer.com/article/10.1134/S0965545X23700992","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 1
Abstract
Reactor polymer compositions (RPCs) based on UHMWPE with Mw = 1000 kg mol–1 and low molecular weight HDPE (LMWPE) were studied. Two series of UHMWPE compositions were used to determine the influence of the molecular weight and properties of the LMWPE fraction on the morpho-logy, mechanical and rheological properties of UHMWPE/LMWPE. Сompositions, including from 10 to 80 wt % UHMWPE with Mw = 160 kg mol–1 (PE-160) were obtained in a two-stage process of ethylene polymerization with a metallocene catalyst. They differed in the order of introduction of PE-160 into UHMWPE (PE-160/UHMWPE and UHMWPE/PE-160). Compositions of UHMWPE and LMWPE with Mw = 48 kg mol–1 (PE-48/UHMWPE) with PE-48 content from 6 to 30 wt % were synthesized in a single-stage polymerization of ethylene in the presence of a tandem catalyst. A comparison of the shape and size of particles of nascent polymer products was made using the SEM method. The morphology, tensile, dynamic mechanical and rheological properties of RPC have been studied depending on the method of their preparation, the content of the low molecular weight fraction, its molecular weight and physical and mechanical properties. An increase in the proportion of PE-160 and PE-48 in PE-160/UHMWPE and PE‑48/UHMWPE leads to an increase in RPC crystallinity, tensile modulus and dynamic mechanical modulus with significant deviations from the additivity rule.
期刊介绍:
Polymer Science, Series A is a journal published in collaboration with the Russian Academy of Sciences. Series A includes experimental and theoretical papers and reviews devoted to physicochemical studies of the structure and properties of polymers (6 issues a year). All journal series present original papers and reviews covering all fundamental aspects of macromolecular science. Contributions should be of marked novelty and interest for a broad readership. Articles may be written in English or Russian regardless of country and nationality of authors. All manuscripts are peer reviewed. Online submission via Internet to the Series A, B, and C is available at http://polymsci.ru.