{"title":"COMPARATIVE ANALYSIS OF TRADITIONAL CLASSIFICATION AND DEEP LEARNING IN LUNG CANCER PREDICTION","authors":"K. Bhavani, Gopalakrishna M T","doi":"10.4015/s101623722250048x","DOIUrl":null,"url":null,"abstract":"The cancer is an intimidating illness. Extra care is necessary while making a diagnosis. To aid the identification process, medical imaging plays a crucial role by producing images of the internal organs of the body for better diagnosis of cancer. Medical images are typically utilized by radiologists, engineers, and clinicians to spot the inner constitution of either individual patients or group of individuals. Most doctors prefer computed tomography (CT) images for initial screening of cancer — mainly lung cancer. To achieve deeper understanding and categorization of lung cancer, diverse machine learning techniques are employed in image classification. Many research works have been done on the classification of CT images with different algorithms, but they failed to reach 100% accuracy. By applying methods like Support Vector Machine, deep learning system like artificial neural network (ANN) and proposed convolution neural network (CNN), a computerized system can be built for truthful classification. The models are built as a classification system that can identify the nodule, if present in the lungs, as benign, malignant or normal or as benign or normal. Lung cancer datasets at Iraq National Center aimed at Cancer Diseases (IQ-OTHNCCD) and Iran Hospital-based CT images are used in this research. SVM, ANN, and proposed CNN classification techniques are applied to the datasets considered. This research work, proposes a model for classification of CT images with very promising accuracy on the datasets considered.","PeriodicalId":8862,"journal":{"name":"Biomedical Engineering: Applications, Basis and Communications","volume":"87 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2022-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Engineering: Applications, Basis and Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4015/s101623722250048x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The cancer is an intimidating illness. Extra care is necessary while making a diagnosis. To aid the identification process, medical imaging plays a crucial role by producing images of the internal organs of the body for better diagnosis of cancer. Medical images are typically utilized by radiologists, engineers, and clinicians to spot the inner constitution of either individual patients or group of individuals. Most doctors prefer computed tomography (CT) images for initial screening of cancer — mainly lung cancer. To achieve deeper understanding and categorization of lung cancer, diverse machine learning techniques are employed in image classification. Many research works have been done on the classification of CT images with different algorithms, but they failed to reach 100% accuracy. By applying methods like Support Vector Machine, deep learning system like artificial neural network (ANN) and proposed convolution neural network (CNN), a computerized system can be built for truthful classification. The models are built as a classification system that can identify the nodule, if present in the lungs, as benign, malignant or normal or as benign or normal. Lung cancer datasets at Iraq National Center aimed at Cancer Diseases (IQ-OTHNCCD) and Iran Hospital-based CT images are used in this research. SVM, ANN, and proposed CNN classification techniques are applied to the datasets considered. This research work, proposes a model for classification of CT images with very promising accuracy on the datasets considered.
期刊介绍:
Biomedical Engineering: Applications, Basis and Communications is an international, interdisciplinary journal aiming at publishing up-to-date contributions on original clinical and basic research in the biomedical engineering. Research of biomedical engineering has grown tremendously in the past few decades. Meanwhile, several outstanding journals in the field have emerged, with different emphases and objectives. We hope this journal will serve as a new forum for both scientists and clinicians to share their ideas and the results of their studies.
Biomedical Engineering: Applications, Basis and Communications explores all facets of biomedical engineering, with emphasis on both the clinical and scientific aspects of the study. It covers the fields of bioelectronics, biomaterials, biomechanics, bioinformatics, nano-biological sciences and clinical engineering. The journal fulfils this aim by publishing regular research / clinical articles, short communications, technical notes and review papers. Papers from both basic research and clinical investigations will be considered.