{"title":"On star Lindelöf spaces","authors":"Wei-Feng Xuan, Yan Song","doi":"10.1556/012.2020.57.2.1462","DOIUrl":null,"url":null,"abstract":"In this paper, we prove that if X is a space with a regular Gδ-diagonal and X2 is star Lindelöf then the cardinality of X is at most 2c. We also prove that if X is a star Lindelöf space with a symmetric g-function such that {g2(n, x): n ∈ ω} = {x} for each x ∈ X then the cardinality of X is at most 2c. Moreover, we prove that if X is a star Lindelöf Hausdorff space satisfying Hψ(X) = κ then e(X) 22κ; and if X is Hausdorff and we(X) = Hψ(X) = κsubset of a space then e(X) 2κ. Finally, we prove that under V = L if X is a first countable DCCC normal space then X has countable extent; and under MA+¬CH there is an example of a first countable, DCCC and normal space which is not star countable extent. This gives an answer to the Question 3.10 in Spaces with property (DC(ω1)), Comment. Math. Univ. Carolin., 58(1) (2017), 131-135.","PeriodicalId":51187,"journal":{"name":"Studia Scientiarum Mathematicarum Hungarica","volume":"329 1","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studia Scientiarum Mathematicarum Hungarica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1556/012.2020.57.2.1462","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we prove that if X is a space with a regular Gδ-diagonal and X2 is star Lindelöf then the cardinality of X is at most 2c. We also prove that if X is a star Lindelöf space with a symmetric g-function such that {g2(n, x): n ∈ ω} = {x} for each x ∈ X then the cardinality of X is at most 2c. Moreover, we prove that if X is a star Lindelöf Hausdorff space satisfying Hψ(X) = κ then e(X) 22κ; and if X is Hausdorff and we(X) = Hψ(X) = κsubset of a space then e(X) 2κ. Finally, we prove that under V = L if X is a first countable DCCC normal space then X has countable extent; and under MA+¬CH there is an example of a first countable, DCCC and normal space which is not star countable extent. This gives an answer to the Question 3.10 in Spaces with property (DC(ω1)), Comment. Math. Univ. Carolin., 58(1) (2017), 131-135.
期刊介绍:
The journal publishes original research papers on various fields of mathematics, e.g., algebra, algebraic geometry, analysis, combinatorics, dynamical systems, geometry, mathematical logic, mathematical statistics, number theory, probability theory, set theory, statistical physics and topology.