Doris Antensteiner, Vincent Dietrich, Michael Fiegert
{"title":"The Furtherance of Autonomous Engineering via Reinforcement Learning","authors":"Doris Antensteiner, Vincent Dietrich, Michael Fiegert","doi":"10.5220/0010544200490059","DOIUrl":null,"url":null,"abstract":"Engineering efforts are one of the major cost factors in today’s industrial automation systems. We present a configuration system, which grants a reduced obligation of engineering effort. Through self-learning the configuration system can adapt to various tasks by actively learning about its environment. We validate our configuration system using a robotic perception system, specifically a picking application. Perception systems for robotic applications become increasingly essential in industrial environments. Today, such systems often require tedious configuration and design from a well trained technician. These processes have to be carried out for each application and each change in the environment. Our robotic perception system is evaluated on the BOP benchmark and consists of two elements. First, we design building blocks, which are algorithms and datasets available for our configuration algorithm. Second, we implement agents (configuration algorithms) which are designed to intelligently interact with our building blocks. On an examplary industrial robotic picking problem we show, that our autonomous engineering system can reduce engineering efforts.","PeriodicalId":6436,"journal":{"name":"2010 2nd International Asia Conference on Informatics in Control, Automation and Robotics (CAR 2010)","volume":"88 1","pages":"49-59"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 2nd International Asia Conference on Informatics in Control, Automation and Robotics (CAR 2010)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5220/0010544200490059","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Engineering efforts are one of the major cost factors in today’s industrial automation systems. We present a configuration system, which grants a reduced obligation of engineering effort. Through self-learning the configuration system can adapt to various tasks by actively learning about its environment. We validate our configuration system using a robotic perception system, specifically a picking application. Perception systems for robotic applications become increasingly essential in industrial environments. Today, such systems often require tedious configuration and design from a well trained technician. These processes have to be carried out for each application and each change in the environment. Our robotic perception system is evaluated on the BOP benchmark and consists of two elements. First, we design building blocks, which are algorithms and datasets available for our configuration algorithm. Second, we implement agents (configuration algorithms) which are designed to intelligently interact with our building blocks. On an examplary industrial robotic picking problem we show, that our autonomous engineering system can reduce engineering efforts.