Wageesha Manamperi, Dinesha Karunathilake, Thilini Madhushani, Nimasha Galagedara, D. Dias
{"title":"Sinhala Speech Recognition for Interactive Voice Response Systems Accessed Through Mobile Phones","authors":"Wageesha Manamperi, Dinesha Karunathilake, Thilini Madhushani, Nimasha Galagedara, D. Dias","doi":"10.1109/MERCON.2018.8421888","DOIUrl":null,"url":null,"abstract":"This paper presents the development of a Sinhala Speech Recognition System to be deployed in an Interactive Voice Response (IVR) system of a telecommunication service provider. The main objectives are to recognize Sinhala digits and names of Sinhala songs to be set up as ringback tones. Sinhala being a phonetic language, its features are studied to develop a list of 47 phonemes. A continuous speech recognition system is developed based on Hidden Markov Model (HMM). The acoustic model is trained using the voice through mobile phone. The outcome is a speaker independent speech recognition system which is capable of recognizing 10 digits and 50 Sinhala songs. A word error rate (WER) of 11.2% using a speech corpus of 0.862 hours and a sentence error rate (SER) of 5.7% using a speech corpus of 1.388 hours are achieved for digits and songs respectively.","PeriodicalId":6603,"journal":{"name":"2018 Moratuwa Engineering Research Conference (MERCon)","volume":"333 1","pages":"241-246"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Moratuwa Engineering Research Conference (MERCon)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MERCON.2018.8421888","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10
Abstract
This paper presents the development of a Sinhala Speech Recognition System to be deployed in an Interactive Voice Response (IVR) system of a telecommunication service provider. The main objectives are to recognize Sinhala digits and names of Sinhala songs to be set up as ringback tones. Sinhala being a phonetic language, its features are studied to develop a list of 47 phonemes. A continuous speech recognition system is developed based on Hidden Markov Model (HMM). The acoustic model is trained using the voice through mobile phone. The outcome is a speaker independent speech recognition system which is capable of recognizing 10 digits and 50 Sinhala songs. A word error rate (WER) of 11.2% using a speech corpus of 0.862 hours and a sentence error rate (SER) of 5.7% using a speech corpus of 1.388 hours are achieved for digits and songs respectively.