New Control Parametrization Strategy for Flexible Feed Drives

Natanael Lanz, S. Weikert, K. Wegener
{"title":"New Control Parametrization Strategy for Flexible Feed Drives","authors":"Natanael Lanz, S. Weikert, K. Wegener","doi":"10.20965/ijat.2022.p0403","DOIUrl":null,"url":null,"abstract":"This paper presents a novel parametrization strategy for optimal contouring control of flexible feed drives. The aim of the new strategy is to maximize the structural damping of the drive and counteract the deformations of the structure. Using a simplified flexible multibody model, the analytical relationships for the design of velocity and position control gains were derived. This results in a controller bandwidth increase of up to 20% compared to the previous state-of-the-art in parametrization of standard cascaded controllers. Through analytical and numerical calculations, it was demonstrated that such an increase is feasible without a decrease in structural damping if the position and velocity controller gains are both considered. Furthermore, it is shown that the ratio between the position and velocity loop gains influences the quasistatic deformation between the encoder and tool center point (TCP). A formula for the optimal choice of the ratio was derived to compensate for the error. This leads to a new straightforward step-by-step approach for axis controller setting, which is then applied to a test bench and its simulation model. It can be shown that the new parametrization strategy leads to a significant reduction in path error at the TCP. Importantly, the analytical approach should simplify the task of setting up a standard cascaded controller significantly by avoiding time-consuming iterations.","PeriodicalId":13583,"journal":{"name":"Int. J. Autom. Technol.","volume":"27 1","pages":"403-420"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Autom. Technol.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20965/ijat.2022.p0403","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents a novel parametrization strategy for optimal contouring control of flexible feed drives. The aim of the new strategy is to maximize the structural damping of the drive and counteract the deformations of the structure. Using a simplified flexible multibody model, the analytical relationships for the design of velocity and position control gains were derived. This results in a controller bandwidth increase of up to 20% compared to the previous state-of-the-art in parametrization of standard cascaded controllers. Through analytical and numerical calculations, it was demonstrated that such an increase is feasible without a decrease in structural damping if the position and velocity controller gains are both considered. Furthermore, it is shown that the ratio between the position and velocity loop gains influences the quasistatic deformation between the encoder and tool center point (TCP). A formula for the optimal choice of the ratio was derived to compensate for the error. This leads to a new straightforward step-by-step approach for axis controller setting, which is then applied to a test bench and its simulation model. It can be shown that the new parametrization strategy leads to a significant reduction in path error at the TCP. Importantly, the analytical approach should simplify the task of setting up a standard cascaded controller significantly by avoiding time-consuming iterations.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
柔性进给驱动控制参数化新策略
提出了一种新的柔性进给传动最优轮廓控制参数化策略。新策略的目的是最大化结构阻尼的驱动和抵消结构的变形。利用简化的柔性多体模型,推导了速度增益和位置增益设计的解析关系。与之前最先进的标准级联控制器参数化相比,这导致控制器带宽增加高达20%。通过分析和数值计算表明,在不降低结构阻尼的情况下,同时考虑位置和速度控制器增益是可行的。此外,位置和速度环路增益的比值会影响编码器与刀具中心点之间的准静态变形。为了补偿误差,导出了最佳比率选择公式。这导致了轴控制器设置的一种新的直接的一步一步的方法,然后将其应用于试验台及其仿真模型。结果表明,新的参数化策略显著降低了TCP的路径误差。重要的是,分析方法应该通过避免耗时的迭代来显著简化建立标准级联控制器的任务。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Advantages of Injection Mold with Hybrid Process of Metal Powder Bed Fusion and Subtractive Process Experimental Investigation of Spatter Particle Behavior and Improvement in Build Quality in PBF-LB Process Planning with Removal of Melting Penetration and Temper Colors in 5-Axis Hybrid Additive and Subtractive Manufacturing Technique for Introducing Internal Defects with Arbitrary Sizes and Locations in Metals via Additive Manufacturing and Evaluation of Fatigue Properties Editorial: Recent Trends in Additive Manufacturing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1