Assessment of minimum force required to initiate sliding of stainless steel wire in ceramic (monocrystalline and polycrystalline) and stainless steel preadjusted edgewise brackets using stainless steel and elastomeric ligation techniques – An in vitro study
{"title":"Assessment of minimum force required to initiate sliding of stainless steel wire in ceramic (monocrystalline and polycrystalline) and stainless steel preadjusted edgewise brackets using stainless steel and elastomeric ligation techniques – An in vitro study","authors":"Krishna J Ranpura, Sangeeta Shah, Dhaval Somani, Keyur Soni, Tilak Parikh, Sejal Patel","doi":"10.4103/inpc.inpc_7_20","DOIUrl":null,"url":null,"abstract":"Objectives: To compare the force required to initiate sliding of rectangular stainless steel wire in monocrystalline ceramic bracket v/s polycrystalline ceramic bracket v/s stainless steel bracket using stainless steel ligation technique and to compare the force required to initiate sliding of rectangular stainless steel wire in monocrystalline ceramic bracket v/s polycrystalline ceramic bracket v/s stainless steel bracket using elastomeric ligation technique. Methods: The archwire was pulled in a vertical direction by the testing machine, until the resistance was overcome and the archwire started to slide through the bracket. The force to overcome resistance and to initiate sliding of the archwire was measured. Results: In metal brackets, there is minimum resistance to sliding as compared to the two different ceramic brackets. Among the two ceramic brackets polycrystalline bracket offered more resistance to sliding then monocrystalline bracket. Although SS ligation offered less resistance to sliding then elastomeric ligation in all three bracket types, the difference between the two ligation systems is not statistically significant. Conclusions: In maximum anchorage cases metal bracket along with SS ligation should be used to reduce the frictional resistance, enabling the use of lighter forces and eventually conserving the anchorage.","PeriodicalId":14257,"journal":{"name":"International Journal of Preventive and Clinical Dental Research","volume":"37 1","pages":"17 - 21"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Preventive and Clinical Dental Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4103/inpc.inpc_7_20","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Objectives: To compare the force required to initiate sliding of rectangular stainless steel wire in monocrystalline ceramic bracket v/s polycrystalline ceramic bracket v/s stainless steel bracket using stainless steel ligation technique and to compare the force required to initiate sliding of rectangular stainless steel wire in monocrystalline ceramic bracket v/s polycrystalline ceramic bracket v/s stainless steel bracket using elastomeric ligation technique. Methods: The archwire was pulled in a vertical direction by the testing machine, until the resistance was overcome and the archwire started to slide through the bracket. The force to overcome resistance and to initiate sliding of the archwire was measured. Results: In metal brackets, there is minimum resistance to sliding as compared to the two different ceramic brackets. Among the two ceramic brackets polycrystalline bracket offered more resistance to sliding then monocrystalline bracket. Although SS ligation offered less resistance to sliding then elastomeric ligation in all three bracket types, the difference between the two ligation systems is not statistically significant. Conclusions: In maximum anchorage cases metal bracket along with SS ligation should be used to reduce the frictional resistance, enabling the use of lighter forces and eventually conserving the anchorage.