Comparison of the microstructure of ERNiCrFe-7A deposited metal by cold wire GTAW and hot wire GTAW

IF 0.7 4区 材料科学 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY Kovove Materialy-Metallic Materials Pub Date : 2022-06-17 DOI:10.31577/km.2022.3.181
H. Zhu, Kun Liu, Xiangping Xu, J. Zou
{"title":"Comparison of the microstructure of ERNiCrFe-7A deposited metal by cold wire GTAW and hot wire GTAW","authors":"H. Zhu, Kun Liu, Xiangping Xu, J. Zou","doi":"10.31577/km.2022.3.181","DOIUrl":null,"url":null,"abstract":"ERNiCrFe-7A filler metal is widely used for welding Inconel 690 alloy, which is often considered for fabricating key components such as reactor pressure vessel and steam generator of nuclear island main equipment. In this work, ERNiCrFe-7A deposited metal was prepared by cold wire and hot wire GTAW process separately. The microstructure and mechanism of precipitation of deposited metal were studied by OM, XRD, SEM, and TEM. Results show that both cold wire and hot wire GTAW can get good quality of ERNiCrFe-7A deposited metal. The matrix of deposited metal is γ -austenite. The microstructure of deposited metal has a cellular dendritic characteristic. The intragranular precipitates are MX phases (M = Nb and Ti, X = C and/or N), and the intergranular precipitates are Cr-rich M 23 C 6 phases. The heat input of cold wire GTAW is higher than that of hot wire GTAW, the columnar grains by cold wire GTAW are wider than those of hot wire GTAW, and the number of MX and M 23 C 6 phases by cold wire GTAW is more than that by hot wire GTAW.","PeriodicalId":49937,"journal":{"name":"Kovove Materialy-Metallic Materials","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2022-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Kovove Materialy-Metallic Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.31577/km.2022.3.181","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

ERNiCrFe-7A filler metal is widely used for welding Inconel 690 alloy, which is often considered for fabricating key components such as reactor pressure vessel and steam generator of nuclear island main equipment. In this work, ERNiCrFe-7A deposited metal was prepared by cold wire and hot wire GTAW process separately. The microstructure and mechanism of precipitation of deposited metal were studied by OM, XRD, SEM, and TEM. Results show that both cold wire and hot wire GTAW can get good quality of ERNiCrFe-7A deposited metal. The matrix of deposited metal is γ -austenite. The microstructure of deposited metal has a cellular dendritic characteristic. The intragranular precipitates are MX phases (M = Nb and Ti, X = C and/or N), and the intergranular precipitates are Cr-rich M 23 C 6 phases. The heat input of cold wire GTAW is higher than that of hot wire GTAW, the columnar grains by cold wire GTAW are wider than those of hot wire GTAW, and the number of MX and M 23 C 6 phases by cold wire GTAW is more than that by hot wire GTAW.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
冷丝GTAW与热丝GTAW沉积ERNiCrFe-7A金属的显微组织比较
ERNiCrFe-7A钎料广泛用于焊接铬镍铁合金,常被考虑用于制造核岛主设备的反应堆压力容器、蒸汽发生器等关键部件。本文采用冷丝法和热丝法分别制备了ERNiCrFe-7A沉积金属。采用OM、XRD、SEM、TEM等方法研究了沉积金属的微观结构和析出机理。结果表明:冷丝和热丝GTAW均可获得较好的ERNiCrFe-7A镀层质量。沉积金属基体为γ -奥氏体。沉积金属的微观结构具有细胞状枝晶特征。晶内析出相为MX相(M = Nb和Ti, X = C和/或N),晶间析出相为富cr的m23c6相。冷丝GTAW的热输入量高于热丝GTAW,冷丝GTAW的柱状晶粒比热丝GTAW宽,冷丝GTAW的MX相和m23c6相数量多于热丝GTAW。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Kovove Materialy-Metallic Materials
Kovove Materialy-Metallic Materials MATERIALS SCIENCE, MULTIDISCIPLINARY-METALLURGY & METALLURGICAL ENGINEERING
CiteScore
1.20
自引率
14.30%
发文量
36
审稿时长
3 months
期刊介绍: Kovove Materialy - Metallic Materials is dedicated to publishing original theoretical and experimental papers concerned with structural, nanostructured, and functional metallic and selected non-metallic materials. Emphasis is placed on those aspects of the science of materials that address: the relationship between the microstructure of materials and their properties, including mechanical, electrical, magnetic and chemical properties; the relationship between the microstructure of materials and the thermodynamics, kinetics and mechanisms of processes; the synthesis and processing of materials, with emphasis on microstructural mechanisms and control; advances in the characterization of the microstructure and properties of materials with experiments and models which help in understanding the properties of materials.
期刊最新文献
Influence of tool rotational speed on the microstructure and mechanical behavior of friction stir processed AA 7050 aluminum alloy Study of electronic and optical properties of As-doped TiO2 using first principles "Evaluating the mechanical and tribological characteristics of aluminium hybrid composites incorporating ZrO2 and graphite micro-particles " "The impact of shielding gas composition and welding speed on weld quality in MAG welding: An experimental study " Thermal properties and container compatibility of (Al0.8Si0.2)100−xBix phase change energy storage alloys
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1