{"title":"A delay nonautonomous model for the effects of fear and refuge on predator-prey interactions with water-level fluctuations","authors":"Abhijit Sarkar, P. Tiwari, Samares Pal","doi":"10.1142/s1793962322500337","DOIUrl":null,"url":null,"abstract":"The interaction of prey (small fish) and predator (large fish) in lakes/ponds at temperate and tropical regions varies when water level fluctuates naturally during seasonal time. We relate the perceptible effect of fear and anti-predator behavior of prey with the water-level fluctuations and describe how these are influenced by the seasonal changing of water level. So, we consider these as time-dependent functions to make the system more realistic. Also, we incorporate the time-dependent delay in the negative growth rate of prey in predator–prey model with Crowley–Martin-type functional response. We clearly provide the basic dynamics of the system such as positiveness, permanence and nonpersistence. The existence of positive periodic solution is studied using Continuation theorem, and suffiecient conditions for globally attractivity of positive periodic solution are also derived. To make the system more comprehensive, we establish numerical simulations, and compare the dynamics of autonomous and nonautonomous systems in the absence as well as the presence of time delay. Our results show that seasonality and time delay create the occurrence of complex behavior such as prevalence of chaotic disorder which can be potentially suppressed by the cost of fear and prey refuge. Also, if time delay increases, then system leads a boundary periodic solution. Our findings assert that the predation, fear of predator and prey refuge are correlated with water-level variations, and give some reasonable biological interpretations for persistence as well as extinction of species due to water-level variations.","PeriodicalId":13657,"journal":{"name":"Int. J. Model. Simul. Sci. Comput.","volume":"72 1","pages":"2250033:1-2250033:33"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Model. Simul. Sci. Comput.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s1793962322500337","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The interaction of prey (small fish) and predator (large fish) in lakes/ponds at temperate and tropical regions varies when water level fluctuates naturally during seasonal time. We relate the perceptible effect of fear and anti-predator behavior of prey with the water-level fluctuations and describe how these are influenced by the seasonal changing of water level. So, we consider these as time-dependent functions to make the system more realistic. Also, we incorporate the time-dependent delay in the negative growth rate of prey in predator–prey model with Crowley–Martin-type functional response. We clearly provide the basic dynamics of the system such as positiveness, permanence and nonpersistence. The existence of positive periodic solution is studied using Continuation theorem, and suffiecient conditions for globally attractivity of positive periodic solution are also derived. To make the system more comprehensive, we establish numerical simulations, and compare the dynamics of autonomous and nonautonomous systems in the absence as well as the presence of time delay. Our results show that seasonality and time delay create the occurrence of complex behavior such as prevalence of chaotic disorder which can be potentially suppressed by the cost of fear and prey refuge. Also, if time delay increases, then system leads a boundary periodic solution. Our findings assert that the predation, fear of predator and prey refuge are correlated with water-level variations, and give some reasonable biological interpretations for persistence as well as extinction of species due to water-level variations.