Strategies for Generating Multi-Time Frame Localization of Cardiac MRI

Samin Sabokrohiyeh, Kathleen Ang, F. Samavati
{"title":"Strategies for Generating Multi-Time Frame Localization of Cardiac MRI","authors":"Samin Sabokrohiyeh, Kathleen Ang, F. Samavati","doi":"10.2312/vcbm.20211342","DOIUrl":null,"url":null,"abstract":"4D Flow MRI is a recent promising technology that is able to capture blood flow information within the heart chambers over a cardiac cycle. To accurately study the flow inside the chambers, there is a need for a high quality anatomical reference which can be provided by another scan known as 3D cine MRI (short-axis 3D (multiple 2D slices) cine SSFP). To take advantage of both scans, data fusion can be done using an intensity-based registration. To reduce the impact of noise on the registration result and the chance of misalignment between the organs, defining a region of interest (localization) should be done prior to the registration. Localizing a dataset – especially a time-varying dataset – can be a daunting task since the localization should be provided for all time frames. We design and evaluate different strategies for extending single time frame localization to time varying data in order to register the 4D Flow MRI and 3D cine MRI over the cardiac cycle. CCS Concepts • Applied computing → Life and medical sciences;","PeriodicalId":88872,"journal":{"name":"Eurographics Workshop on Visual Computing for Biomedicine","volume":"1 1","pages":"25-29"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Eurographics Workshop on Visual Computing for Biomedicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2312/vcbm.20211342","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

4D Flow MRI is a recent promising technology that is able to capture blood flow information within the heart chambers over a cardiac cycle. To accurately study the flow inside the chambers, there is a need for a high quality anatomical reference which can be provided by another scan known as 3D cine MRI (short-axis 3D (multiple 2D slices) cine SSFP). To take advantage of both scans, data fusion can be done using an intensity-based registration. To reduce the impact of noise on the registration result and the chance of misalignment between the organs, defining a region of interest (localization) should be done prior to the registration. Localizing a dataset – especially a time-varying dataset – can be a daunting task since the localization should be provided for all time frames. We design and evaluate different strategies for extending single time frame localization to time varying data in order to register the 4D Flow MRI and 3D cine MRI over the cardiac cycle. CCS Concepts • Applied computing → Life and medical sciences;
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
心脏MRI多时间帧定位生成策略
4D Flow MRI是一项最近很有前途的技术,它能够在心脏周期内捕获心脏腔内的血流信息。为了准确地研究腔室内部的流动,需要高质量的解剖学参考,这可以通过另一种称为3D电影MRI(短轴3D(多个2D切片)电影SSFP)的扫描提供。为了利用这两种扫描,可以使用基于强度的配准来进行数据融合。为了减少噪声对配准结果的影响和器官之间不对齐的机会,应该在配准之前定义一个感兴趣的区域(定位)。本地化数据集——尤其是时变数据集——可能是一项艰巨的任务,因为本地化应该为所有时间框架提供。我们设计并评估了将单一时间框架定位扩展到时变数据的不同策略,以便在心脏周期内记录4D Flow MRI和3D电影MRI。•应用计算→生命和医学科学;
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Visual Analytics to Assess Deep Learning Models for Cross-Modal Brain Tumor Segmentation Distance Visualizations for Vascular Structures in Desktop and VR: Overview and Implementation Is there a Tornado in Alex's Blood Flow? A Case Study for Narrative Medical Visualization HistoContours: a Framework for Visual Annotation of Histopathology Whole Slide Images Predicting, Analyzing and Communicating Outcomes of COVID-19 Hospitalizations with Medical Images and Clinical Data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1