Alginate poly and oligosaccharide (AOS) from Sargassum sp. as immunostimulant in gnotobiotic artemia challenge tests and antibacterial diffusion disc assay against pathogenic Vibrio parahaemolyticus, V. vulnificus and V. harveyi
E. Yudiati, N. Azhar, M. J. Achmad, S. Sunaryo, A. Susanto, B. Yulianto, R. Alghazeer, W. Alansari, G. Shamlan
{"title":"Alginate poly and oligosaccharide (AOS) from Sargassum sp. as immunostimulant in gnotobiotic artemia challenge tests and antibacterial diffusion disc assay against pathogenic Vibrio parahaemolyticus, V. vulnificus and V. harveyi","authors":"E. Yudiati, N. Azhar, M. J. Achmad, S. Sunaryo, A. Susanto, B. Yulianto, R. Alghazeer, W. Alansari, G. Shamlan","doi":"10.3233/mgc-210116","DOIUrl":null,"url":null,"abstract":"Alginate is a polysaccharide derived from Sargassum sp. and is a potent immunostimulant with antibacterial activity, including against Vibrio spp. This genus of bacteria is found in freshwater and marine environments and is a common infectious, pathogenic bacteria both for aquatic cultivans and humans. Here, we determined the ability of sodium alginate polysaccharides and oligosaccharides (AOS) to act as immunostimulants in Artemia challenge tests and antibacterial diffusion disc assays against Vibrio parahaemolyticus, V. vulnificus, and V. harveyi. The AOS was produced by thermal heating. Dry sodium alginates were weighed out from 4.21 to 6.47 grams with a yield varying from 21.05 to 32.35%. Alginate polysaccharides were challenged against V harveyi and showed 8 positive results. The highest inhibitor zone was 12.962±3.623 mm. Based on 18 tests, AOS showed 12 positive results, with the highest inhibitor zone being 10.250±0.09 mm. The encapsulated alginate against Vibrio parahaemolyticus, Vibrio harveyi, Vibrio vulnificus, and the non-challenged tests without any Vibrio spp. addition resulted in the best concentrations of 800 ppm (polysaccharide) and 600 ppm (oligosaccharide), respectively. The lower concentration of oligosaccharides alginate were more effective and has the potential to be superior as an antibacterial agent and immunestimulant, as opposed to alginate polysaccharide.","PeriodicalId":18027,"journal":{"name":"Main Group Chemistry","volume":"468 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2022-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Main Group Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3233/mgc-210116","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1
Abstract
Alginate is a polysaccharide derived from Sargassum sp. and is a potent immunostimulant with antibacterial activity, including against Vibrio spp. This genus of bacteria is found in freshwater and marine environments and is a common infectious, pathogenic bacteria both for aquatic cultivans and humans. Here, we determined the ability of sodium alginate polysaccharides and oligosaccharides (AOS) to act as immunostimulants in Artemia challenge tests and antibacterial diffusion disc assays against Vibrio parahaemolyticus, V. vulnificus, and V. harveyi. The AOS was produced by thermal heating. Dry sodium alginates were weighed out from 4.21 to 6.47 grams with a yield varying from 21.05 to 32.35%. Alginate polysaccharides were challenged against V harveyi and showed 8 positive results. The highest inhibitor zone was 12.962±3.623 mm. Based on 18 tests, AOS showed 12 positive results, with the highest inhibitor zone being 10.250±0.09 mm. The encapsulated alginate against Vibrio parahaemolyticus, Vibrio harveyi, Vibrio vulnificus, and the non-challenged tests without any Vibrio spp. addition resulted in the best concentrations of 800 ppm (polysaccharide) and 600 ppm (oligosaccharide), respectively. The lower concentration of oligosaccharides alginate were more effective and has the potential to be superior as an antibacterial agent and immunestimulant, as opposed to alginate polysaccharide.
期刊介绍:
Main Group Chemistry is intended to be a primary resource for all chemistry, engineering, biological, and materials researchers in both academia and in industry with an interest in the elements from the groups 1, 2, 12–18, lanthanides and actinides. The journal is committed to maintaining a high standard for its publications. This will be ensured by a rigorous peer-review process with most articles being reviewed by at least one editorial board member. Additionally, all manuscripts will be proofread and corrected by a dedicated copy editor located at the University of Kentucky.