{"title":"An FCM clustering algorithm based on the identification of accounting statement whitewashing behavior in universities","authors":"Qihao Yang","doi":"10.1515/jisys-2022-0022","DOIUrl":null,"url":null,"abstract":"Abstract The traditional recognition method of whitewash behavior of accounting statements needs to analyze a large number of special data samples. The learning rate of the algorithm is low, resulting in low recognition accuracy. To solve the aforementioned problems, this article proposes a method to identify the whitewash behavior of university accounting statements based on the FCM clustering algorithm. This article analyzes the motivation of university accounting statement whitewashing behavior, studies the common means of statement whitewashing, and establishes a fuzzy set for the identification of university accounting statement whitewashing behavior. By calculating the fuzzy partition coefficient, the membership matrix of whitewash behavior recognition is established, and the whitewash behavior is classified through the iteration of the FCM algorithm. The comparative experimental results show that the recognition method has good recognition performance, low recognition error rate, and recognition accuracy of 82%.","PeriodicalId":46139,"journal":{"name":"Journal of Intelligent Systems","volume":"32 1","pages":"345 - 355"},"PeriodicalIF":2.1000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/jisys-2022-0022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract The traditional recognition method of whitewash behavior of accounting statements needs to analyze a large number of special data samples. The learning rate of the algorithm is low, resulting in low recognition accuracy. To solve the aforementioned problems, this article proposes a method to identify the whitewash behavior of university accounting statements based on the FCM clustering algorithm. This article analyzes the motivation of university accounting statement whitewashing behavior, studies the common means of statement whitewashing, and establishes a fuzzy set for the identification of university accounting statement whitewashing behavior. By calculating the fuzzy partition coefficient, the membership matrix of whitewash behavior recognition is established, and the whitewash behavior is classified through the iteration of the FCM algorithm. The comparative experimental results show that the recognition method has good recognition performance, low recognition error rate, and recognition accuracy of 82%.
期刊介绍:
The Journal of Intelligent Systems aims to provide research and review papers, as well as Brief Communications at an interdisciplinary level, with the field of intelligent systems providing the focal point. This field includes areas like artificial intelligence, models and computational theories of human cognition, perception and motivation; brain models, artificial neural nets and neural computing. It covers contributions from the social, human and computer sciences to the analysis and application of information technology.