Pattern-Affinitive Propagation Across Depth, Surface Normal and Semantic Segmentation

Zhenyu Zhang, Zhen Cui, Chunyan Xu, Yan Yan, N. Sebe, Jian Yang
{"title":"Pattern-Affinitive Propagation Across Depth, Surface Normal and Semantic Segmentation","authors":"Zhenyu Zhang, Zhen Cui, Chunyan Xu, Yan Yan, N. Sebe, Jian Yang","doi":"10.1109/CVPR.2019.00423","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a novel Pattern-Affinitive Propagation (PAP) framework to jointly predict depth, surface normal and semantic segmentation. The motivation behind it comes from the statistic observation that pattern-affinitive pairs recur much frequently across different tasks as well as within a task. Thus, we can conduct two types of propagations, cross-task propagation and task-specific propagation, to adaptively diffuse those similar patterns. The former integrates cross-task affinity patterns to adapt to each task therein through the calculation on non-local relationships. Next the latter performs an iterative diffusion in the feature space so that the cross-task affinity patterns can be widely-spread within the task. Accordingly, the learning of each task can be regularized and boosted by the complementary task-level affinities. Extensive experiments demonstrate the effectiveness and the superiority of our method on the joint three tasks. Meanwhile, we achieve the state-of-the-art or competitive results on the three related datasets, NYUD-v2, SUN-RGBD and KITTI.","PeriodicalId":6711,"journal":{"name":"2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","volume":"63 6 1","pages":"4101-4110"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"209","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2019.00423","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 209

Abstract

In this paper, we propose a novel Pattern-Affinitive Propagation (PAP) framework to jointly predict depth, surface normal and semantic segmentation. The motivation behind it comes from the statistic observation that pattern-affinitive pairs recur much frequently across different tasks as well as within a task. Thus, we can conduct two types of propagations, cross-task propagation and task-specific propagation, to adaptively diffuse those similar patterns. The former integrates cross-task affinity patterns to adapt to each task therein through the calculation on non-local relationships. Next the latter performs an iterative diffusion in the feature space so that the cross-task affinity patterns can be widely-spread within the task. Accordingly, the learning of each task can be regularized and boosted by the complementary task-level affinities. Extensive experiments demonstrate the effectiveness and the superiority of our method on the joint three tasks. Meanwhile, we achieve the state-of-the-art or competitive results on the three related datasets, NYUD-v2, SUN-RGBD and KITTI.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
模式亲和传播跨越深度,表面法线和语义分割
在本文中,我们提出了一种新的模式亲和性传播(PAP)框架来联合预测深度、表面法向和语义分割。其背后的动机来自统计观察,即模式亲和对在不同任务之间以及在一个任务内频繁地重复出现。因此,我们可以进行两种类型的传播,跨任务传播和特定于任务的传播,以自适应地传播这些相似的模式。前者通过对非局部关系的计算,集成了跨任务的关联模式,以适应其中的每个任务。然后,后者在特征空间中执行迭代扩散,以便跨任务关联模式可以在任务中广泛传播。因此,每个任务的学习可以通过互补的任务级亲和力进行规范化和促进。大量的实验证明了该方法在联合三任务上的有效性和优越性。同时,我们在NYUD-v2、SUN-RGBD和KITTI三个相关数据集上取得了最先进或具有竞争力的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Multi-Level Context Ultra-Aggregation for Stereo Matching Leveraging Heterogeneous Auxiliary Tasks to Assist Crowd Counting Incremental Object Learning From Contiguous Views Progressive Teacher-Student Learning for Early Action Prediction Inverse Discriminative Networks for Handwritten Signature Verification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1