{"title":"A structural study of carbosilane dendrimers versus polyamidoamine","authors":"M Elshakre , A.S Atallah , S Santos, S Grigoras","doi":"10.1016/S1089-3156(99)00029-X","DOIUrl":null,"url":null,"abstract":"<div><p><span>Several types of substituted carbosilane-based dendrimers are studied in comparison with polyamidoamine (PAMAM), using molecular mechanics approach, to evaluate the shape and steric interactions when the generation number (</span><em>G</em><span>) increases. A scaled van der Waals energy parameter: the scaled steric energy, is defined, and used, to compare the steric repulsion in these dendrimers. Our calculations indicate that the steric repulsions, between the end groups at the surface of dendrimers, do not increase for higher generations of such macromolecules. Density calculations show that this property decreases with the increase of </span><em>G</em><span>. The moment of inertia calculations show that the shape of the considered dendrimers is asymmetrical for lower generations and becomes spherical at higher generations. The shape of the carbosilane dendrimers is more spherical than PAMAM. The results show that higher generations can afford the increased number of terminal groups at the surface of the macromolecules, without increase of the density in this region, therefor these factors (steric repulsion between the end groups at the surface, or high density) would not impede the chemistry to build higher generations of completely branched dendrimers.</span></p></div>","PeriodicalId":100309,"journal":{"name":"Computational and Theoretical Polymer Science","volume":"10 1","pages":"Pages 21-28"},"PeriodicalIF":0.0000,"publicationDate":"2000-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S1089-3156(99)00029-X","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational and Theoretical Polymer Science","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S108931569900029X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11
Abstract
Several types of substituted carbosilane-based dendrimers are studied in comparison with polyamidoamine (PAMAM), using molecular mechanics approach, to evaluate the shape and steric interactions when the generation number (G) increases. A scaled van der Waals energy parameter: the scaled steric energy, is defined, and used, to compare the steric repulsion in these dendrimers. Our calculations indicate that the steric repulsions, between the end groups at the surface of dendrimers, do not increase for higher generations of such macromolecules. Density calculations show that this property decreases with the increase of G. The moment of inertia calculations show that the shape of the considered dendrimers is asymmetrical for lower generations and becomes spherical at higher generations. The shape of the carbosilane dendrimers is more spherical than PAMAM. The results show that higher generations can afford the increased number of terminal groups at the surface of the macromolecules, without increase of the density in this region, therefor these factors (steric repulsion between the end groups at the surface, or high density) would not impede the chemistry to build higher generations of completely branched dendrimers.