Automated Configuration for Agile Software Environments

Q1 Computer Science IEEE Cloud Computing Pub Date : 2022-07-01 DOI:10.1109/CLOUD55607.2022.00074
Negar Mohammadi Koushki, Sanjeev Sondur, K. Kant
{"title":"Automated Configuration for Agile Software Environments","authors":"Negar Mohammadi Koushki, Sanjeev Sondur, K. Kant","doi":"10.1109/CLOUD55607.2022.00074","DOIUrl":null,"url":null,"abstract":"The increasing use of the DevOps paradigm in software systems has substantially increased the frequency of configuration parameter setting changes. Ensuring the correctness of such settings is generally a very challenging problem due to the complex interdependencies, and calls for an automated mechanism that can both run quickly and provide accurate settings. In this paper, we propose an efficient discrete combinatorial optimization technique that makes two unique contributions: (a) an improved and extended metaheuristic that exploits the application domain knowledge for fast convergence, and (b) the development and quantification of a discrete version of the classical tunneling mechanism to improve the accuracy of the solution. Our extensive evaluation using available workload traces that do include configuration information shows that the proposed technique can provide a lower-cost solution (by ~60%) with faster convergence (by ~48%) as compared to the traditional metaheuristic algorithms. Also, our solution succeeds in finding a feasible solution in approximately 30% more cases than the baseline algorithm.","PeriodicalId":54281,"journal":{"name":"IEEE Cloud Computing","volume":"16 1","pages":"511-521"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Cloud Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CLOUD55607.2022.00074","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 2

Abstract

The increasing use of the DevOps paradigm in software systems has substantially increased the frequency of configuration parameter setting changes. Ensuring the correctness of such settings is generally a very challenging problem due to the complex interdependencies, and calls for an automated mechanism that can both run quickly and provide accurate settings. In this paper, we propose an efficient discrete combinatorial optimization technique that makes two unique contributions: (a) an improved and extended metaheuristic that exploits the application domain knowledge for fast convergence, and (b) the development and quantification of a discrete version of the classical tunneling mechanism to improve the accuracy of the solution. Our extensive evaluation using available workload traces that do include configuration information shows that the proposed technique can provide a lower-cost solution (by ~60%) with faster convergence (by ~48%) as compared to the traditional metaheuristic algorithms. Also, our solution succeeds in finding a feasible solution in approximately 30% more cases than the baseline algorithm.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
敏捷软件环境的自动化配置
在软件系统中越来越多地使用DevOps范例,大大增加了配置参数设置更改的频率。由于复杂的相互依赖性,确保这些设置的正确性通常是一个非常具有挑战性的问题,并且需要一种既能快速运行又能提供准确设置的自动化机制。在本文中,我们提出了一种有效的离散组合优化技术,它有两个独特的贡献:(a)改进和扩展的元启发式,利用应用领域知识实现快速收敛;(b)开发和量化经典隧道机制的离散版本,以提高解的准确性。我们使用包括配置信息的可用工作负载跟踪进行了广泛的评估,结果表明,与传统的元启发式算法相比,所提出的技术可以提供成本更低(降低约60%)、收敛速度更快(提高约48%)的解决方案。此外,我们的解决方案比基线算法在大约30%的情况下成功地找到了可行的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Cloud Computing
IEEE Cloud Computing Computer Science-Computer Networks and Communications
CiteScore
11.20
自引率
0.00%
发文量
0
期刊介绍: Cessation. IEEE Cloud Computing is committed to the timely publication of peer-reviewed articles that provide innovative research ideas, applications results, and case studies in all areas of cloud computing. Topics relating to novel theory, algorithms, performance analyses and applications of techniques are covered. More specifically: Cloud software, Cloud security, Trade-offs between privacy and utility of cloud, Cloud in the business environment, Cloud economics, Cloud governance, Migrating to the cloud, Cloud standards, Development tools, Backup and recovery, Interoperability, Applications management, Data analytics, Communications protocols, Mobile cloud, Private clouds, Liability issues for data loss on clouds, Data integration, Big data, Cloud education, Cloud skill sets, Cloud energy consumption, The architecture of cloud computing, Applications in commerce, education, and industry, Infrastructure as a Service (IaaS), Platform as a Service (PaaS), Software as a Service (SaaS), Business Process as a Service (BPaaS)
期刊最新文献
Different in different ways: A network-analysis approach to voice and prosody in Autism Spectrum Disorder. Layered Contention Mitigation for Cloud Storage Towards More Effective and Explainable Fault Management Using Cross-Layer Service Topology Bypass Container Overlay Networks with Transparent BPF-driven Socket Replacement Event-Driven Approach for Monitoring and Orchestration of Cloud and Edge-Enabled IoT Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1