K. Masuda, A. Bossard, Yuki Sugano, Toshikazu Kato, S. Onogi
{"title":"Reconstruction and error detection of blood vessel network from ultrasound volume data","authors":"K. Masuda, A. Bossard, Yuki Sugano, Toshikazu Kato, S. Onogi","doi":"10.1109/CBMS.2013.6627850","DOIUrl":null,"url":null,"abstract":"Recently, we described a reconstruction method of the blood vessel network by 3D thinning to detect vessels bifurcations, which is applied to the control of microbubbles in vivo. However, that method did not include error detections and was only verified on a very simply shaped artificial blood vessel. In this paper we propose a system including an abstraction method for the blood vessel network. Such a model is then analyzed through graph theory and error patterns in the reconstructed network. We proceeded in vitro by acquiring volume data from an artificial capillary with multi-bifurcations whose diameter ranges from 0.5 to 2.0mm and with different flow velocities. We were able to reconstruct the blood vessel network of an in vitro artificial capillary with multi-bifurcations. Results show that our system successfully reconstructed the corresponding networks as much as the limitation of resolution of echography.","PeriodicalId":20519,"journal":{"name":"Proceedings of the 26th IEEE International Symposium on Computer-Based Medical Systems","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2013-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 26th IEEE International Symposium on Computer-Based Medical Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CBMS.2013.6627850","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Recently, we described a reconstruction method of the blood vessel network by 3D thinning to detect vessels bifurcations, which is applied to the control of microbubbles in vivo. However, that method did not include error detections and was only verified on a very simply shaped artificial blood vessel. In this paper we propose a system including an abstraction method for the blood vessel network. Such a model is then analyzed through graph theory and error patterns in the reconstructed network. We proceeded in vitro by acquiring volume data from an artificial capillary with multi-bifurcations whose diameter ranges from 0.5 to 2.0mm and with different flow velocities. We were able to reconstruct the blood vessel network of an in vitro artificial capillary with multi-bifurcations. Results show that our system successfully reconstructed the corresponding networks as much as the limitation of resolution of echography.