Attention Scaling for Crowd Counting

Xiaoheng Jiang, Li Zhang, Mingliang Xu, Tianzhu Zhang, Pei Lv, Bing Zhou, Xin Yang, Yanwei Pang
{"title":"Attention Scaling for Crowd Counting","authors":"Xiaoheng Jiang, Li Zhang, Mingliang Xu, Tianzhu Zhang, Pei Lv, Bing Zhou, Xin Yang, Yanwei Pang","doi":"10.1109/cvpr42600.2020.00476","DOIUrl":null,"url":null,"abstract":"Convolutional Neural Network (CNN) based methods generally take crowd counting as a regression task by outputting crowd densities. They learn the mapping between image contents and crowd density distributions. Though having achieved promising results, these data-driven counting networks are prone to overestimate or underestimate people counts of regions with different density patterns, which degrades the whole count accuracy. To overcome this problem, we propose an approach to alleviate the counting performance differences in different regions. Specifically, our approach consists of two networks named Density Attention Network (DANet) and Attention Scaling Network (ASNet). DANet provides ASNet with attention masks related to regions of different density levels. ASNet first generates density maps and scaling factors and then multiplies them by attention masks to output separate attention-based density maps. These density maps are summed to give the final density map. The attention scaling factors help attenuate the estimation errors in different regions. Furthermore, we present a novel Adaptive Pyramid Loss (APLoss) to hierarchically calculate the estimation losses of sub-regions, which alleviates the training bias. Extensive experiments on four challenging datasets (ShanghaiTech Part A, UCF_CC_50, UCF-QNRF, and WorldExpo'10) demonstrate the superiority of the proposed approach.","PeriodicalId":6715,"journal":{"name":"2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","volume":"165 1","pages":"4705-4714"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"183","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/cvpr42600.2020.00476","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 183

Abstract

Convolutional Neural Network (CNN) based methods generally take crowd counting as a regression task by outputting crowd densities. They learn the mapping between image contents and crowd density distributions. Though having achieved promising results, these data-driven counting networks are prone to overestimate or underestimate people counts of regions with different density patterns, which degrades the whole count accuracy. To overcome this problem, we propose an approach to alleviate the counting performance differences in different regions. Specifically, our approach consists of two networks named Density Attention Network (DANet) and Attention Scaling Network (ASNet). DANet provides ASNet with attention masks related to regions of different density levels. ASNet first generates density maps and scaling factors and then multiplies them by attention masks to output separate attention-based density maps. These density maps are summed to give the final density map. The attention scaling factors help attenuate the estimation errors in different regions. Furthermore, we present a novel Adaptive Pyramid Loss (APLoss) to hierarchically calculate the estimation losses of sub-regions, which alleviates the training bias. Extensive experiments on four challenging datasets (ShanghaiTech Part A, UCF_CC_50, UCF-QNRF, and WorldExpo'10) demonstrate the superiority of the proposed approach.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
人群计数的注意力缩放
基于卷积神经网络(CNN)的方法一般将人群计数作为一个回归任务,输出人群密度。他们学习图像内容和人群密度分布之间的映射。这些数据驱动的计数网络虽然取得了令人鼓舞的结果,但容易高估或低估具有不同密度模式的区域的人口计数,从而降低了整个计数的准确性。为了克服这一问题,我们提出了一种缓解不同区域计数性能差异的方法。具体来说,我们的方法由两个网络组成,分别是密度注意力网络(DANet)和注意力缩放网络(ASNet)。DANet为ASNet提供了与不同密度水平的区域相关的注意掩模。ASNet首先生成密度图和缩放因子,然后将它们乘以注意掩模以输出单独的基于注意的密度图。将这些密度图相加得到最终的密度图。注意尺度因子有助于减小不同区域的估计误差。此外,我们提出了一种新的自适应金字塔损失(APLoss)来分层计算子区域的估计损失,从而减轻了训练偏差。在四个具有挑战性的数据集(上海科技A部、UCF_CC_50、UCF-QNRF和WorldExpo’10)上进行的大量实验证明了该方法的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Geometric Structure Based and Regularized Depth Estimation From 360 Indoor Imagery 3D Part Guided Image Editing for Fine-Grained Object Understanding SDC-Depth: Semantic Divide-and-Conquer Network for Monocular Depth Estimation Approximating shapes in images with low-complexity polygons PFRL: Pose-Free Reinforcement Learning for 6D Pose Estimation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1