Heat Transfer in Nanomaterial Suspension (CuO and Al2O3) Using KKL Model

M. Awais, Saeed Ehsan Awan, M. Raja, M. Nawaz, Wasim Ullah Khan, Muhammad Yousaf Malik, Yigang He
{"title":"Heat Transfer in Nanomaterial Suspension (CuO and Al2O3) Using KKL Model","authors":"M. Awais, Saeed Ehsan Awan, M. Raja, M. Nawaz, Wasim Ullah Khan, Muhammad Yousaf Malik, Yigang He","doi":"10.3390/COATINGS11040417","DOIUrl":null,"url":null,"abstract":"Novel nonlinear power-law flux models were utilized to model the heat transport phe-nomenon in nano-micropolar fluid over a flexible surface. The nonlinear conservation laws (mass, momentum, energy, mass transport and angular momentum) and KKL cor-relations for nanomaterial under novel flux model were solved numerically. Computed results were used to study the shear-thinning and shear-thickening nature of nano pol-ymer suspension by considering n-diffusion theory. Normalized velocity, temperature and micro-rotation profiles were investigated under the variation of physical parame-ters. Shear stresses at the wall for nanoparticles (CuO and Al2O3) were recorded and dis-played in the table. Error analyses for different physical parameters were prepared for various parameters to validate the obtained results.","PeriodicalId":22482,"journal":{"name":"THE Coatings","volume":"4 1","pages":"417"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"THE Coatings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/COATINGS11040417","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

Abstract

Novel nonlinear power-law flux models were utilized to model the heat transport phe-nomenon in nano-micropolar fluid over a flexible surface. The nonlinear conservation laws (mass, momentum, energy, mass transport and angular momentum) and KKL cor-relations for nanomaterial under novel flux model were solved numerically. Computed results were used to study the shear-thinning and shear-thickening nature of nano pol-ymer suspension by considering n-diffusion theory. Normalized velocity, temperature and micro-rotation profiles were investigated under the variation of physical parame-ters. Shear stresses at the wall for nanoparticles (CuO and Al2O3) were recorded and dis-played in the table. Error analyses for different physical parameters were prepared for various parameters to validate the obtained results.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于KKL模型的纳米悬浮液(CuO和Al2O3)传热研究
利用非线性幂律通量模型模拟了纳米微极流体在柔性表面上的热传输现象。对新型通量模型下纳米材料的非线性守恒定律(质量、动量、能量、质量输运和角动量)和KKL相关关系进行了数值求解。利用计算结果,考虑n扩散理论,研究了纳米高分子悬浮液的剪切减薄和剪切增厚特性。研究了物理参数变化下的归一化速度、温度和微旋转曲线。表中记录并显示了纳米颗粒(CuO和Al2O3)在管壁处的剪切应力。对不同物理参数进行了误差分析,验证了所得结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Anticorrosion Property of Alcohol Amine Modified Phosphoric and Tannic Acid Based Rust Converter and Its Waterborne Polymer-Based Paint for Carbon Steel Comprehensive Data Collection Device for Plasma Equipment Intelligence Studies Coffee Wastes as Sustainable Flame Retardants for Polymer Materials Numerical Investigation on the Evaporation Performance of Desulfurization Wastewater in a Spray Drying Tower without Deflectors Effect of Assembly Unit of Expansive Agents on the Mechanical Performance and Durability of Cement-Based Materials
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1