Comprehensive Study on the Electron Temperature and Electron Density of Laser-Induced Mg Plasma

Yao Hongbing, E. Asamoah, C. Jiawei, Y. Dongqing, Y. Fengxiao
{"title":"Comprehensive Study on the Electron Temperature and Electron Density of Laser-Induced Mg Plasma","authors":"Yao Hongbing, E. Asamoah, C. Jiawei, Y. Dongqing, Y. Fengxiao","doi":"10.4172/2469-410X.1000181","DOIUrl":null,"url":null,"abstract":"In this study, we shall report the spectroscopic studies of the laser induced-Mg plasma in the atmospheric air by a Q-switched Nd-YAG laser operating at its fundamental wavelength of 1062 nm. The plasma was evaluated as a function of distance along the plasma expansion from 0.5-5.5 mm. The electron temperature and the electron number density were determined from the Boltzmann’s plot method and the Stark broadening methods respectively. From our investigations the electron temperature was evaluated to be in the range of 17556-9785 K for the laser energy of 500 mJ and 17341-8946 K with laser energy of 450 mJ. The electron number density was deduced to be from 1.46 × 1017-1.89 × 1017 cm-3 and 1.29 × 1017-1.78×1017 cm-3 respectively. From our evaluations, we observed that the electron temperature and number density decrease along the distance of the plasma expansion, and also increases with increasing laser energy.","PeriodicalId":92245,"journal":{"name":"Journal of lasers, optics & photonics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of lasers, optics & photonics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4172/2469-410X.1000181","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

In this study, we shall report the spectroscopic studies of the laser induced-Mg plasma in the atmospheric air by a Q-switched Nd-YAG laser operating at its fundamental wavelength of 1062 nm. The plasma was evaluated as a function of distance along the plasma expansion from 0.5-5.5 mm. The electron temperature and the electron number density were determined from the Boltzmann’s plot method and the Stark broadening methods respectively. From our investigations the electron temperature was evaluated to be in the range of 17556-9785 K for the laser energy of 500 mJ and 17341-8946 K with laser energy of 450 mJ. The electron number density was deduced to be from 1.46 × 1017-1.89 × 1017 cm-3 and 1.29 × 1017-1.78×1017 cm-3 respectively. From our evaluations, we observed that the electron temperature and number density decrease along the distance of the plasma expansion, and also increases with increasing laser energy.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
激光诱导Mg等离子体电子温度和电子密度的综合研究
在本研究中,我们将报道一个工作在1062 nm基波长的调q Nd-YAG激光器对大气中激光诱导的mg等离子体的光谱研究。等离子体被评估为沿等离子体膨胀0.5-5.5 mm距离的函数。分别用玻尔兹曼图法和斯塔克展宽法测定了电子温度和电子数密度。结果表明,当激光能量为500 mJ时,电子温度在17556 ~ 9785 K之间;当激光能量为450 mJ时,电子温度在17341 ~ 8946 K之间。电子数密度分别为1.46 ×1017 ~ 1.89 ×1017 cm-3和1.29 × 1017-1.78×1017 cm-3。结果表明,电子温度和电子数密度随等离子体膨胀距离的增大而减小,随激光能量的增大而增大。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Short Note on Laser Optics Photorefractive waveguides Hot money Quantum electrodynamics with an artificial atom in a superconducting circuit High speed laser based intersatellite link systems for harsh environment of space
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1