Fault diagnosis for non-Markovian timed stochastic discrete event systems

D. Lefebvre
{"title":"Fault diagnosis for non-Markovian timed stochastic discrete event systems","authors":"D. Lefebvre","doi":"10.1109/ETFA.2017.8247623","DOIUrl":null,"url":null,"abstract":"This paper concerns the fault diagnosis of stochastic discrete event systems that behave with non-Markovian dynamics. Partially observed Petri nets are used to model the system structure and the sensors. Stochastic processes with arbitrary probability density functions and various time semantics are used to model the dynamics including the failure processes. From the proposed modelling and the collected timed measurements, the probabilities of consistent trajectories are computed with a numerical scheme. The advantage of the proposed scheme is that it can be used for arbitrary probability density functions of the firing durations. It works for race or preselection choice policies. Diagnosis in terms of faults probability is established as a consequence. An example is presented to illustrate the method.","PeriodicalId":6522,"journal":{"name":"2017 22nd IEEE International Conference on Emerging Technologies and Factory Automation (ETFA)","volume":"731 1","pages":"1-7"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 22nd IEEE International Conference on Emerging Technologies and Factory Automation (ETFA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ETFA.2017.8247623","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

This paper concerns the fault diagnosis of stochastic discrete event systems that behave with non-Markovian dynamics. Partially observed Petri nets are used to model the system structure and the sensors. Stochastic processes with arbitrary probability density functions and various time semantics are used to model the dynamics including the failure processes. From the proposed modelling and the collected timed measurements, the probabilities of consistent trajectories are computed with a numerical scheme. The advantage of the proposed scheme is that it can be used for arbitrary probability density functions of the firing durations. It works for race or preselection choice policies. Diagnosis in terms of faults probability is established as a consequence. An example is presented to illustrate the method.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
非马尔可夫定时随机离散事件系统的故障诊断
研究了具有非马尔可夫动力学特性的随机离散事件系统的故障诊断问题。采用部分观测的Petri网对系统结构和传感器进行建模。采用具有任意概率密度函数和各种时间语义的随机过程来模拟包括失效过程在内的动力学过程。根据所建立的模型和收集到的时间测量数据,用数值格式计算了一致轨迹的概率。该方法的优点是可以对任意的发射持续时间的概率密度函数进行求解。它适用于种族或预选选择政策。因此,建立了基于故障概率的诊断。最后给出了一个实例来说明该方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Towards Practical and Formal Security Risk Analysis of IoT (Internet of Things) Applications Modeling Misbehavior Detection Timeliness in VANETs Embedding Anomaly Detection Autoencoders for Wind Turbines The Beremiz PLC: Adding Support for Industrial Communication Protocols Using code generated by MATLAB for the Mold Level Control System of a Continuous Slab Caster in ArcelorMittal Gent
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1