{"title":"Microblog Sentiment Analysis Using User Similarity and Interaction-based Social Relations","authors":"Xiaoyan Ruan, Lin Xiao, Chuanmin Mi, Yue Lu","doi":"10.4018/IJWSR.2020070103","DOIUrl":null,"url":null,"abstract":"With the rapid development of information technology, microblog sentiment analysis (MSA) has become a popular research topic extensively examined in the literature. Microblogging messages are usually short, unstructured, contain less information, creating a significant challenge for the application of traditional content-based methods. In this study, the authors propose a novel method, MSA-USSR, in which user similarity information and interaction-based social relations information are combined to build sentiment relationships between microblogging data. They make use of these microblog–microblog sentiment relations to train the sentiment polarity classification classifier. Two Sina-Weibo datasets were utilized to verify the proposed model. The experimental results show that the proposed method has a better sentiment classification accuracy and F1-score than the content-based support vector machine (SVM) method and the state-of-the-art supervised model known as SANT.","PeriodicalId":54936,"journal":{"name":"International Journal of Web Services Research","volume":"83 1","pages":"39-55"},"PeriodicalIF":0.8000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Web Services Research","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.4018/IJWSR.2020070103","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 4
Abstract
With the rapid development of information technology, microblog sentiment analysis (MSA) has become a popular research topic extensively examined in the literature. Microblogging messages are usually short, unstructured, contain less information, creating a significant challenge for the application of traditional content-based methods. In this study, the authors propose a novel method, MSA-USSR, in which user similarity information and interaction-based social relations information are combined to build sentiment relationships between microblogging data. They make use of these microblog–microblog sentiment relations to train the sentiment polarity classification classifier. Two Sina-Weibo datasets were utilized to verify the proposed model. The experimental results show that the proposed method has a better sentiment classification accuracy and F1-score than the content-based support vector machine (SVM) method and the state-of-the-art supervised model known as SANT.
期刊介绍:
The International Journal of Web Services Research (IJWSR) is the first refereed, international publication featuring the latest research findings and industry solutions involving all aspects of Web services technology. This journal covers advancements, standards, and practices of Web services, as well as identifies emerging research topics and defines the future of Web services on grid computing, multimedia, and communication. IJWSR provides an open, formal publication for high quality articles developed by theoreticians, educators, developers, researchers, and practitioners for those desiring to stay abreast of challenges in Web services technology.