Three identical bosons: Properties in noninteger dimensions and in external fields

E. Garrido, A. Jensen
{"title":"Three identical bosons: Properties in noninteger dimensions and in external fields","authors":"E. Garrido, A. Jensen","doi":"10.1103/PhysRevResearch.2.033261","DOIUrl":null,"url":null,"abstract":"Three-body systems that are continuously squeezed from a three-dimensional (3D) space into a two-dimensional (2D) space are investigated. Such a squeezing can be obtained by means of an external confining potential acting along a single axis. However, this procedure can be numerically demanding, or even undoable, especially for large squeezed scenarios. An alternative is provided by use of the dimension $d$ as a parameter that changes continuously within the range $2\\leq d \\leq 3$. The simplicity of the $d$-calculations is exploited to investigate the evolution of three-body states after progressive confinement. The case of three identical spinless bosons with relative $s$-waves in 3D, and a harmonic oscillator squeezing potential is considered. We compare results from the two methods and provide a translation between them, relating dimension, squeezing length, and wave functions from both methods. All calculations are then possible entirely within the simpler $d$-method, but simultaneously providing the equivalent geometry with the external potential.","PeriodicalId":8838,"journal":{"name":"arXiv: Quantum Gases","volume":"50 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Quantum Gases","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/PhysRevResearch.2.033261","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Three-body systems that are continuously squeezed from a three-dimensional (3D) space into a two-dimensional (2D) space are investigated. Such a squeezing can be obtained by means of an external confining potential acting along a single axis. However, this procedure can be numerically demanding, or even undoable, especially for large squeezed scenarios. An alternative is provided by use of the dimension $d$ as a parameter that changes continuously within the range $2\leq d \leq 3$. The simplicity of the $d$-calculations is exploited to investigate the evolution of three-body states after progressive confinement. The case of three identical spinless bosons with relative $s$-waves in 3D, and a harmonic oscillator squeezing potential is considered. We compare results from the two methods and provide a translation between them, relating dimension, squeezing length, and wave functions from both methods. All calculations are then possible entirely within the simpler $d$-method, but simultaneously providing the equivalent geometry with the external potential.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
三个相同玻色子:非整数维和外场的性质
研究了连续从三维(3D)空间挤压到二维(2D)空间的三体系统。这种挤压可以通过沿单轴作用的外部限制势来获得。然而,这个过程可能在数值上要求很高,甚至是不可行的,特别是对于大型挤压场景。另一种方法是使用维度$d$作为在$2\leq d \leq 3$范围内连续变化的参数。利用$d$ -计算的简单性来研究三体态在渐进约束后的演化。考虑了三维三维中具有相对$s$ -波的三个相同的无自旋玻色子和谐振子压缩势的情况。我们比较了两种方法的结果,并提供了它们之间的转换,将两种方法的维数、压缩长度和波函数联系起来。然后,所有的计算都可以完全在更简单的$d$ -方法中进行,但同时提供具有外部势的等效几何。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Breathing mode in two-dimensional binary self-bound Bose-gas droplets Fast-forward scaling of atom-molecule conversion in Bose-Einstein condensates Relaxation in an extended bosonic Josephson junction Dynamic structure factors of a strongly interacting Fermi superfluid near an orbital Feshbach resonance across the phase transition from BCS to Sarma superfluid Stability of supercurrents in a superfluid phase of spin-1 bosons in an optical lattice
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1