Sensor-Failure-Resilient Multi-IMU Visual-Inertial Navigation

Kevin Eckenhoff, Patrick Geneva, G. Huang
{"title":"Sensor-Failure-Resilient Multi-IMU Visual-Inertial Navigation","authors":"Kevin Eckenhoff, Patrick Geneva, G. Huang","doi":"10.1109/ICRA.2019.8794295","DOIUrl":null,"url":null,"abstract":"In this paper, we present a real-time multi-IMU visual-inertial navigation system (mi-VINS) that utilizes the information from multiple inertial measurement units (IMUs) and thus is resilient to IMU sensor failures. In particular, in the proposed mi-VINS formulation, one of the IMUs serves as the “base” of the system, while the rest act as auxiliary sensors aiding in state estimation. A key advantage of this architecture is the ability to seamlessly “promote” an auxiliary IMU as a new base, for example, upon detection of the base IMU failure, thus being resilient to the single point of sensor failure as seen in conventional VINS. Moreover, in order to properly fuse the information of multiple IMUs, both the spatial (relative pose) and temporal (time offset) calibration parameters between each sensor and the base IMU are estimated online. The proposed miVINS with online spatial and temporal calibration is validated in both simulations and real-world experiments, and is shown to be able to provide accurate localization and calibration even in scenarios with IMU sensor failures.","PeriodicalId":6730,"journal":{"name":"2019 International Conference on Robotics and Automation (ICRA)","volume":"49 1","pages":"3542-3548"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Robotics and Automation (ICRA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRA.2019.8794295","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23

Abstract

In this paper, we present a real-time multi-IMU visual-inertial navigation system (mi-VINS) that utilizes the information from multiple inertial measurement units (IMUs) and thus is resilient to IMU sensor failures. In particular, in the proposed mi-VINS formulation, one of the IMUs serves as the “base” of the system, while the rest act as auxiliary sensors aiding in state estimation. A key advantage of this architecture is the ability to seamlessly “promote” an auxiliary IMU as a new base, for example, upon detection of the base IMU failure, thus being resilient to the single point of sensor failure as seen in conventional VINS. Moreover, in order to properly fuse the information of multiple IMUs, both the spatial (relative pose) and temporal (time offset) calibration parameters between each sensor and the base IMU are estimated online. The proposed miVINS with online spatial and temporal calibration is validated in both simulations and real-world experiments, and is shown to be able to provide accurate localization and calibration even in scenarios with IMU sensor failures.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
传感器-故障弹性多imu视觉惯性导航
在本文中,我们提出了一种实时多IMU视觉惯性导航系统(mi-VINS),该系统利用了来自多个惯性测量单元(IMU)的信息,因此对IMU传感器故障具有弹性。特别地,在提出的mi-VINS公式中,其中一个imu充当系统的“基础”,而其余的充当辅助传感器,帮助进行状态估计。这种架构的一个关键优势是能够无缝地“提升”辅助IMU作为新的基础,例如,在检测到基础IMU故障时,因此具有传统VINS中所见的单点传感器故障的弹性。此外,为了正确融合多个IMU的信息,在线估计每个传感器与基本IMU之间的空间(相对位姿)和时间(时间偏移)校准参数。在仿真和现实世界的实验中验证了所提出的具有在线时空校准的miVINS,并且证明即使在IMU传感器故障的情况下也能够提供准确的定位和校准。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Improving collective decision accuracy via time-varying cross-inhibition Design of a Modular Continuum Robot Segment for use in a General Purpose Manipulator* Adaptive H∞ Controller for Precise Manoeuvring of a Space Robot Laparoscopy instrument tracking for single view camera and skill assessment Event-based, Direct Camera Tracking from a Photometric 3D Map using Nonlinear Optimization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1