Few-shot Malicious Domain Detection on Heterogeneous Graph with Meta-learning

IF 2 3区 计算机科学 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Computer Supported Cooperative Work-The Journal of Collaborative Computing Pub Date : 2023-05-24 DOI:10.1109/CSCWD57460.2023.10152708
Yi Gao, Fangfang Yuan, Cong Cao, Majing Su, Dakui Wang, Yanbing Liu
{"title":"Few-shot Malicious Domain Detection on Heterogeneous Graph with Meta-learning","authors":"Yi Gao, Fangfang Yuan, Cong Cao, Majing Su, Dakui Wang, Yanbing Liu","doi":"10.1109/CSCWD57460.2023.10152708","DOIUrl":null,"url":null,"abstract":"The Domain Name System (DNS), one of the essential basic services on the Internet, is often abused by attackers to launch various cyber attacks, such as phishing and spamming. Researchers have proposed many machine learning-based and deep learning-based methods to detect malicious domains. However, these methods rely on a large-scale dataset with labeled samples for model training. The fact is that the labeled domain samples are limited in the real-world DNS dataset. In this paper, we propose a few-shot malicious domain detection model named MetaDom, which employs a meta-learning algorithm for model optimization. Specifically, We first model the DNS scenario as a heterogeneous graph to capture richer information by analysing the complex relations among domains, IP addresses and clients. Then, we learn the domain representations with a heterogeneous graph neural network on the DNS HG. Finally, considering that only few labeled data are available in the real-world DNS scenario, a meta-learning algorithm with knowledge distillation is introduced to optimize the model. Extensive experiments on the real DNS dataset show that MetaDom outperforms other state-of-the-art methods.","PeriodicalId":51008,"journal":{"name":"Computer Supported Cooperative Work-The Journal of Collaborative Computing","volume":"62 1","pages":"727-732"},"PeriodicalIF":2.0000,"publicationDate":"2023-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Supported Cooperative Work-The Journal of Collaborative Computing","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1109/CSCWD57460.2023.10152708","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

The Domain Name System (DNS), one of the essential basic services on the Internet, is often abused by attackers to launch various cyber attacks, such as phishing and spamming. Researchers have proposed many machine learning-based and deep learning-based methods to detect malicious domains. However, these methods rely on a large-scale dataset with labeled samples for model training. The fact is that the labeled domain samples are limited in the real-world DNS dataset. In this paper, we propose a few-shot malicious domain detection model named MetaDom, which employs a meta-learning algorithm for model optimization. Specifically, We first model the DNS scenario as a heterogeneous graph to capture richer information by analysing the complex relations among domains, IP addresses and clients. Then, we learn the domain representations with a heterogeneous graph neural network on the DNS HG. Finally, considering that only few labeled data are available in the real-world DNS scenario, a meta-learning algorithm with knowledge distillation is introduced to optimize the model. Extensive experiments on the real DNS dataset show that MetaDom outperforms other state-of-the-art methods.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于元学习的异构图少射恶意域检测
域名系统(DNS)是互联网上必不可少的基本服务之一,经常被攻击者滥用,进行各种网络攻击,例如网络钓鱼和垃圾邮件。研究人员提出了许多基于机器学习和深度学习的方法来检测恶意域。然而,这些方法依赖于带有标记样本的大规模数据集进行模型训练。事实上,标记的域样本在真实的DNS数据集中是有限的。本文提出了一种基于元学习算法的少射恶意域检测模型MetaDom,该模型采用元学习算法对模型进行优化。具体来说,我们首先将DNS场景建模为异构图,通过分析域、IP地址和客户端之间的复杂关系来获取更丰富的信息。然后,利用异构图神经网络在DNS HG上学习域表示。最后,考虑到实际DNS场景中可用的标记数据很少,引入了知识蒸馏的元学习算法对模型进行优化。在真实DNS数据集上进行的大量实验表明,MetaDom优于其他最先进的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Computer Supported Cooperative Work-The Journal of Collaborative Computing
Computer Supported Cooperative Work-The Journal of Collaborative Computing COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS-
CiteScore
6.40
自引率
4.20%
发文量
31
审稿时长
>12 weeks
期刊介绍: Computer Supported Cooperative Work (CSCW): The Journal of Collaborative Computing and Work Practices is devoted to innovative research in computer-supported cooperative work (CSCW). It provides an interdisciplinary and international forum for the debate and exchange of ideas concerning theoretical, practical, technical, and social issues in CSCW. The CSCW Journal arose in response to the growing interest in the design, implementation and use of technical systems (including computing, information, and communications technologies) which support people working cooperatively, and its scope remains to encompass the multifarious aspects of research within CSCW and related areas. The CSCW Journal focuses on research oriented towards the development of collaborative computing technologies on the basis of studies of actual cooperative work practices (where ‘work’ is used in the wider sense). That is, it welcomes in particular submissions that (a) report on findings from ethnographic or similar kinds of in-depth fieldwork of work practices with a view to their technological implications, (b) report on empirical evaluations of the use of extant or novel technical solutions under real-world conditions, and/or (c) develop technical or conceptual frameworks for practice-oriented computing research based on previous fieldwork and evaluations.
期刊最新文献
Text-based Patient – Doctor Discourse Online And Patients’ Experiences of Empathy Agency, Power and Confrontation: the Role for Socially Engaged Art in CSCW with Rurban Communities in Support of Inclusion Data as Relation: Ontological Trouble in the Data-Driven Public Administration The Avatar Facial Expression Reenactment Method in the Metaverse based on Overall-Local Optical-Flow Estimation and Illumination Difference Investigating Author Research Relatedness through Crowdsourcing: A Replication Study on MTurk
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1