R. Ruland, D. Arnett, G. Bowden, R. Carr, B. Dix, B. Fuss, C. Le Cocq, Z. Wolf, J. Aspenleiter, G. Rakowsky, J. Skaritka, P. Duffy, M. Libkind
{"title":"Alignment of the VISA undulator","authors":"R. Ruland, D. Arnett, G. Bowden, R. Carr, B. Dix, B. Fuss, C. Le Cocq, Z. Wolf, J. Aspenleiter, G. Rakowsky, J. Skaritka, P. Duffy, M. Libkind","doi":"10.1109/PAC.1999.795558","DOIUrl":null,"url":null,"abstract":"The Visible-Infrared SASE Amplifier (VISA) undulator consists of four 99 cm long segments. Each undulator segment is set up on a pulsed-wire bench, to characterize the magnetic properties and to locate the magnetic axis of the FODO array. Subsequently, the location of the magnetic axis, as defined by the wire, is referenced to tooling balls on each magnet segment by means of a straightness interferometer. After installation in the vacuum chamber, the four magnet segments are aligned with respect to themselves and globally to the beam line reference laser. A specially designed alignment fixture is used to mount one straightness interferometer each in the horizontal and vertical plane of the beam. The goal of these procedures is to keep the combined rms trajectory error, due to magnetic and alignment errors, to 50 /spl mu/m.","PeriodicalId":20453,"journal":{"name":"Proceedings of the 1999 Particle Accelerator Conference (Cat. No.99CH36366)","volume":"281 1","pages":"1390-1392 vol.2"},"PeriodicalIF":0.0000,"publicationDate":"1999-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 1999 Particle Accelerator Conference (Cat. No.99CH36366)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PAC.1999.795558","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
The Visible-Infrared SASE Amplifier (VISA) undulator consists of four 99 cm long segments. Each undulator segment is set up on a pulsed-wire bench, to characterize the magnetic properties and to locate the magnetic axis of the FODO array. Subsequently, the location of the magnetic axis, as defined by the wire, is referenced to tooling balls on each magnet segment by means of a straightness interferometer. After installation in the vacuum chamber, the four magnet segments are aligned with respect to themselves and globally to the beam line reference laser. A specially designed alignment fixture is used to mount one straightness interferometer each in the horizontal and vertical plane of the beam. The goal of these procedures is to keep the combined rms trajectory error, due to magnetic and alignment errors, to 50 /spl mu/m.