Weicheng Cui , Yong Hu , Wei Guo , Binbin Pan , Fang Wang
{"title":"A preliminary design of a movable laboratory for hadal trenches","authors":"Weicheng Cui , Yong Hu , Wei Guo , Binbin Pan , Fang Wang","doi":"10.1016/j.mio.2014.07.002","DOIUrl":null,"url":null,"abstract":"<div><p><span>The hadal trenches and the biology and ecology of the organisms that inhabit them remain one of the least understood marine environments. The study of hadal trenches which is often referred to as hadal science, needs special technical equipment support such as landers, unmanned </span>submersibles<span> and manned submersibles. Sending sampling devices or exploratory vehicles to hadal depths is technically challenging and expensive, consequently, our current understanding of hadal ecological structure is still very much in its infancy. In recognition of the significance that hadal science holds and the unique and challenging requirements that work in the deep ocean presents, Shanghai Ocean University has made a significant commitment to develop operational support for the promotion of hadal science in China. The present authors from the JIAOLONG development team were invited by Shanghai Ocean University to establish a hadal science and technology research center (HAST). The first focus of HAST is to construct a movable laboratory for hadal trenches which includes a mothership, an Human Occupied Vehicle, an Autonomous and Remotely-operated Vehicle and several landers. The purpose of this paper is to introduce the basic philosophy and concepts for the movable laboratory and the preliminary designs for the manned submersible, unmanned submersible and landers. Through these designs all the technical problems to be solved in the development of the full ocean depth surveying and sampling tools are identified and possible solutions to the key technical issues are discussed.</span></p></div>","PeriodicalId":100922,"journal":{"name":"Methods in Oceanography","volume":"9 ","pages":"Pages 1-16"},"PeriodicalIF":0.0000,"publicationDate":"2014-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.mio.2014.07.002","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Methods in Oceanography","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2211122014000292","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20
Abstract
The hadal trenches and the biology and ecology of the organisms that inhabit them remain one of the least understood marine environments. The study of hadal trenches which is often referred to as hadal science, needs special technical equipment support such as landers, unmanned submersibles and manned submersibles. Sending sampling devices or exploratory vehicles to hadal depths is technically challenging and expensive, consequently, our current understanding of hadal ecological structure is still very much in its infancy. In recognition of the significance that hadal science holds and the unique and challenging requirements that work in the deep ocean presents, Shanghai Ocean University has made a significant commitment to develop operational support for the promotion of hadal science in China. The present authors from the JIAOLONG development team were invited by Shanghai Ocean University to establish a hadal science and technology research center (HAST). The first focus of HAST is to construct a movable laboratory for hadal trenches which includes a mothership, an Human Occupied Vehicle, an Autonomous and Remotely-operated Vehicle and several landers. The purpose of this paper is to introduce the basic philosophy and concepts for the movable laboratory and the preliminary designs for the manned submersible, unmanned submersible and landers. Through these designs all the technical problems to be solved in the development of the full ocean depth surveying and sampling tools are identified and possible solutions to the key technical issues are discussed.