{"title":"ANTIBIOFILM ACTIVITY OF SELECTED PLANT SPECIES","authors":"Jelena N. Terzić, M. Stanković, O. Stefanović","doi":"10.46793/iccbi21.280t","DOIUrl":null,"url":null,"abstract":"Bacterial biofilm is a complex community of bacterial cells enclosed in a polymer matrix and attached to a biotic or abiotic substrate. In this living form the bacteria are more resistant to antimicrobial agents than in the form of planktonic cells. Biofilm is a common cause of chronic infections in humans, so due to the growing resistance to antibiotics, alternative methods for controlling infections using medicinal plants have been proposed. In this study, the antibiofilm activity of ethanol and acetone extracts of plants Lamium album, Achillea millefolium and Agrimonia eupatoria against eight clinical isolates of human pathogenic bacteria was examined. Inhibition of biofilm formation was demonstrated using the crystal violet test and the effect on metabolic activity was confirmed by the use of resazurin dye test. Ethanol extract of L. album showed the greatest activity against P. aeruginosa (PA9) at a concentration of 20 mg/ml (> 80% of inhibition), while acetone extract acted at a concentration of 5 mg/ml (≥ 18%) against Klebsiella sp. (K9). At a concentration of 10 mg/ml, the ethanol extract of A. millefolium was effective against E. coli (E16) and P. aeruginosa (PA8) (> 70%), while the acetone extract was effective at 2.5 mg/ml (> 80%) against E. coli (E16). Ethanol and acetone extracts of A. eupatoria were effective at a concentration of 10 mg/ml (> 50%) against E. coli (E16). The antibiofilm activity of the tested plant extracts on certain clinical isolates indicates their great potential in the treatment of infections caused by biofilm-producing bacteria.","PeriodicalId":9171,"journal":{"name":"Book of Proceedings: 1st International Conference on Chemo and BioInformatics,","volume":"53 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Book of Proceedings: 1st International Conference on Chemo and BioInformatics,","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46793/iccbi21.280t","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Bacterial biofilm is a complex community of bacterial cells enclosed in a polymer matrix and attached to a biotic or abiotic substrate. In this living form the bacteria are more resistant to antimicrobial agents than in the form of planktonic cells. Biofilm is a common cause of chronic infections in humans, so due to the growing resistance to antibiotics, alternative methods for controlling infections using medicinal plants have been proposed. In this study, the antibiofilm activity of ethanol and acetone extracts of plants Lamium album, Achillea millefolium and Agrimonia eupatoria against eight clinical isolates of human pathogenic bacteria was examined. Inhibition of biofilm formation was demonstrated using the crystal violet test and the effect on metabolic activity was confirmed by the use of resazurin dye test. Ethanol extract of L. album showed the greatest activity against P. aeruginosa (PA9) at a concentration of 20 mg/ml (> 80% of inhibition), while acetone extract acted at a concentration of 5 mg/ml (≥ 18%) against Klebsiella sp. (K9). At a concentration of 10 mg/ml, the ethanol extract of A. millefolium was effective against E. coli (E16) and P. aeruginosa (PA8) (> 70%), while the acetone extract was effective at 2.5 mg/ml (> 80%) against E. coli (E16). Ethanol and acetone extracts of A. eupatoria were effective at a concentration of 10 mg/ml (> 50%) against E. coli (E16). The antibiofilm activity of the tested plant extracts on certain clinical isolates indicates their great potential in the treatment of infections caused by biofilm-producing bacteria.