{"title":"Ouabain‐induced reversal of astrocytic GLT‐1 crucial to neuronal death in neuron/astrocyte co‐cultures","authors":"Motoki Tanaka, K. Kawahara, Rui Hosoya, Tatsuro Kosugi, Takayuki Nakajima, Takeshi Yamada","doi":"10.1002/NRC.20029","DOIUrl":null,"url":null,"abstract":"We investigated whether the role of the astrocytic glutamate transporter GLT-1 is reversed when the ionic gradient across plasma membrane has collapsed, and if so, whether the reversal is crucial to neuronal death. To estimate the direction of glutamate transport by GLT-1, Na+ movement coupled with glutamate transport in astrocytes was analyzed in mixed astrocyte/neuron cultures. The rise in astrocytic intracellular Na+ due to glutamate exposure was suppressed by co-treatment with dihydrokainate (DHK). In contrast, the ouabain-induced rise in Na+ was significantly enhanced by DHK, suggesting that the role of GLT-1 was reversed. We then analyzed whether the reversal increased the amount of extracellular glutamate, and was crucial to excitotoxic neuronal death. Ouabain treatment resulted in a marked rise in glutamate and in neuronal death, and both the rise and cell death were significantly attenuated by DHK treatment.","PeriodicalId":19198,"journal":{"name":"Neuroscience Research Communications","volume":"17 1","pages":"150-163"},"PeriodicalIF":0.0000,"publicationDate":"2004-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroscience Research Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/NRC.20029","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
We investigated whether the role of the astrocytic glutamate transporter GLT-1 is reversed when the ionic gradient across plasma membrane has collapsed, and if so, whether the reversal is crucial to neuronal death. To estimate the direction of glutamate transport by GLT-1, Na+ movement coupled with glutamate transport in astrocytes was analyzed in mixed astrocyte/neuron cultures. The rise in astrocytic intracellular Na+ due to glutamate exposure was suppressed by co-treatment with dihydrokainate (DHK). In contrast, the ouabain-induced rise in Na+ was significantly enhanced by DHK, suggesting that the role of GLT-1 was reversed. We then analyzed whether the reversal increased the amount of extracellular glutamate, and was crucial to excitotoxic neuronal death. Ouabain treatment resulted in a marked rise in glutamate and in neuronal death, and both the rise and cell death were significantly attenuated by DHK treatment.