{"title":"Процессы структурообразования в фуллереновых смесях","authors":"Рамиль Миннегаязович Хуснутдинов, Регина Радиевна Хайруллина","doi":"10.21883/ftt.2023.01.53940.501","DOIUrl":null,"url":null,"abstract":"Glass formation processes in condensed matter are characterized by some specific short-range order changes in the arrangement of particles (atoms/molecules/ions). So, the short-range structural order in supercooled liquids and glasses is characterized by fivefold symmetry in the arrangement of particles, often referred to as icosahedral (ideal or distorted) short-range order. This article is devoted to the study of local structural features of the supercooled melt of the A20B80 fullerene mixture (where A = C60 and B = C70) obtained under various cooling protocols in order to elucidate the mechanism of formation of the icosahedral short-range order in binary molecular liquids. Comprehensive studies of the properties of a fullerene mixture melt were carried out using large-scale molecular dynamics simulations followed by structural and cluster analysis. The crystallization temperature and the critical glass transition temperature of the system were calculated to be Tm ≈ 1439 K and Tc ≈ 1238 K, respectively. It has been established that the crystallization of a binary fullerene mixture proceeds according to the polycrystalline scenario with the formation of clusters with fcc and hcp symmetries. It is shown that in a supercooled fullerene mixture, the short-range icosahedral order is formed by an insignificant number of ideal icosahedral clusters and a certain set of distorted icosahedral clusters, the fraction of which remains practically unchanged at temperatures below the critical glass transition temperature.","PeriodicalId":24077,"journal":{"name":"Физика твердого тела","volume":"43 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Физика твердого тела","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21883/ftt.2023.01.53940.501","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Glass formation processes in condensed matter are characterized by some specific short-range order changes in the arrangement of particles (atoms/molecules/ions). So, the short-range structural order in supercooled liquids and glasses is characterized by fivefold symmetry in the arrangement of particles, often referred to as icosahedral (ideal or distorted) short-range order. This article is devoted to the study of local structural features of the supercooled melt of the A20B80 fullerene mixture (where A = C60 and B = C70) obtained under various cooling protocols in order to elucidate the mechanism of formation of the icosahedral short-range order in binary molecular liquids. Comprehensive studies of the properties of a fullerene mixture melt were carried out using large-scale molecular dynamics simulations followed by structural and cluster analysis. The crystallization temperature and the critical glass transition temperature of the system were calculated to be Tm ≈ 1439 K and Tc ≈ 1238 K, respectively. It has been established that the crystallization of a binary fullerene mixture proceeds according to the polycrystalline scenario with the formation of clusters with fcc and hcp symmetries. It is shown that in a supercooled fullerene mixture, the short-range icosahedral order is formed by an insignificant number of ideal icosahedral clusters and a certain set of distorted icosahedral clusters, the fraction of which remains practically unchanged at temperatures below the critical glass transition temperature.