Edge-Assisted Control for Healthcare Internet of Things

IF 3.5 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS ACM Transactions on Internet of Things Pub Date : 2020-10-19 DOI:10.1145/3407091
A. Anzanpour, Delaram Amiri, I. Azimi, M. Levorato, N. Dutt, P. Liljeberg, A. Rahmani
{"title":"Edge-Assisted Control for Healthcare Internet of Things","authors":"A. Anzanpour, Delaram Amiri, I. Azimi, M. Levorato, N. Dutt, P. Liljeberg, A. Rahmani","doi":"10.1145/3407091","DOIUrl":null,"url":null,"abstract":"Recent advances in pervasive Internet of Things technologies and edge computing have opened new avenues for development of ubiquitous health monitoring applications. Delivering an acceptable level of usability and accuracy for these healthcare Internet of Things applications requires optimization of both system-driven and data-driven aspects, which are typically done in a disjoint manner. Although decoupled optimization of these processes yields local optima at each level, synergistic coupling of the system and data levels can lead to a holistic solution opening new opportunities for optimization. In this article, we present an edge-assisted resource manager that dynamically controls the fidelity and duration of sensing w.r.t. changes in the patient’s activity and health state, thus fine-tuning the trade-off between energy efficiency and measurement accuracy. The cornerstone of our proposed solution is an intelligent low-latency real-time controller implemented at the edge layer that detects abnormalities in the patient’s condition and accordingly adjusts the sensing parameters of a reconfigurable wireless sensor node. We assess the efficiency of our proposed system via a case study of the photoplethysmography-based medical early warning score system. Our experiments on a real full hardware-software early warning score system reveal up to 49% power savings while maintaining the accuracy of the sensory data.","PeriodicalId":29764,"journal":{"name":"ACM Transactions on Internet of Things","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2020-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Internet of Things","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3407091","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 8

Abstract

Recent advances in pervasive Internet of Things technologies and edge computing have opened new avenues for development of ubiquitous health monitoring applications. Delivering an acceptable level of usability and accuracy for these healthcare Internet of Things applications requires optimization of both system-driven and data-driven aspects, which are typically done in a disjoint manner. Although decoupled optimization of these processes yields local optima at each level, synergistic coupling of the system and data levels can lead to a holistic solution opening new opportunities for optimization. In this article, we present an edge-assisted resource manager that dynamically controls the fidelity and duration of sensing w.r.t. changes in the patient’s activity and health state, thus fine-tuning the trade-off between energy efficiency and measurement accuracy. The cornerstone of our proposed solution is an intelligent low-latency real-time controller implemented at the edge layer that detects abnormalities in the patient’s condition and accordingly adjusts the sensing parameters of a reconfigurable wireless sensor node. We assess the efficiency of our proposed system via a case study of the photoplethysmography-based medical early warning score system. Our experiments on a real full hardware-software early warning score system reveal up to 49% power savings while maintaining the accuracy of the sensory data.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
医疗物联网边缘辅助控制
普及物联网技术和边缘计算的最新进展为开发无处不在的健康监测应用开辟了新的途径。为这些医疗保健物联网应用程序提供可接受的可用性和准确性水平,需要对系统驱动和数据驱动两个方面进行优化,而这两个方面通常以脱节的方式完成。虽然这些过程的解耦优化在每个级别上产生局部最优,但系统和数据级别的协同耦合可以产生一个整体的解决方案,为优化提供新的机会。在本文中,我们介绍了一种边缘辅助资源管理器,它可以动态控制感知患者活动和健康状态下w.r.t.变化的保真度和持续时间,从而微调能源效率和测量精度之间的权衡。我们提出的解决方案的基础是在边缘层实现一个智能低延迟实时控制器,该控制器可以检测患者病情的异常情况,并相应地调整可重构无线传感器节点的传感参数。我们通过一个基于光容积脉搏波的医疗预警评分系统的案例研究来评估我们提出的系统的效率。我们在一个真正的全硬件软件预警评分系统上的实验显示,在保持感官数据准确性的同时,节省高达49%的电力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.20
自引率
3.70%
发文量
0
期刊最新文献
FLAShadow: A Flash-based Shadow Stack for Low-end Embedded Systems CoSense: Deep Learning Augmented Sensing for Coexistence with Networking in Millimeter-Wave Picocells CASPER: Context-Aware IoT Anomaly Detection System for Industrial Robotic Arms Collaborative Video Caching in the Edge Network using Deep Reinforcement Learning ARIoTEDef: Adversarially Robust IoT Early Defense System Based on Self-Evolution against Multi-step Attacks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1