{"title":"Predicting Latency of Blockchain-Based Systems Using Architectural Modelling and Simulation","authors":"Rajitha Yasaweerasinghelage, M. Staples, I. Weber","doi":"10.1109/ICSA.2017.22","DOIUrl":null,"url":null,"abstract":"Blockchain is an emerging technology for sharing transactional data and computation without using a central trusted third party. It is an architectural choice to use a blockchain instead of traditional databases or protocols, and this creates trade-offs between non-functional requirements such as performance, cost, and security. However, little is known about predicting the behaviour of blockchain-based systems. This paper shows the feasibility of using architectural performance modelling and simulation tools to predict the latency of blockchain-based systems. We use established tools and techniques, but explore new blockchain-specific issues such as the configuration of the number of confirmation blocks and inter-block times. We report on a lab-based experimental study using an incident management system, showing predictions of median system level response time with a relative error mostly under 10%. We discuss how the approach can be used to support architectural decision-making, during the design of blockchain-based systems.","PeriodicalId":6599,"journal":{"name":"2017 IEEE International Conference on Software Architecture (ICSA)","volume":"151 1","pages":"253-256"},"PeriodicalIF":0.0000,"publicationDate":"2017-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"81","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Software Architecture (ICSA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSA.2017.22","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 81
Abstract
Blockchain is an emerging technology for sharing transactional data and computation without using a central trusted third party. It is an architectural choice to use a blockchain instead of traditional databases or protocols, and this creates trade-offs between non-functional requirements such as performance, cost, and security. However, little is known about predicting the behaviour of blockchain-based systems. This paper shows the feasibility of using architectural performance modelling and simulation tools to predict the latency of blockchain-based systems. We use established tools and techniques, but explore new blockchain-specific issues such as the configuration of the number of confirmation blocks and inter-block times. We report on a lab-based experimental study using an incident management system, showing predictions of median system level response time with a relative error mostly under 10%. We discuss how the approach can be used to support architectural decision-making, during the design of blockchain-based systems.