{"title":"Cartilage-Bone Interface Features, Scaffold and Cell Options for Regeneration","authors":"E. Bayrak, Burak Ozcan, C. Erisken","doi":"10.4172/2157-7552.1000174","DOIUrl":null,"url":null,"abstract":"Tissues with different material and biological properties are connected to one another through interfaces, which can be generally categorized as soft-to-soft tissue interfaces (muscle-tendon, etc.), softto-hard tissue interfaces (cartilage-bone, tendon-bone, etc.) and hardto-hard tissue interfaces (dentin-enamel, etc.). Since these interfaces merge biological materials, i.e., tissues, having distinct composition, structure and function, they possess complexities associated with their hierarchical structures, and when injured their healing/regeneration pathways follow more intricate phenomena compared to single tissues making up the interfaces. Findings reveal that injuries related to tissues connected in series occur mostly at the interfaces due to the mismatch between material properties of individual tissues. Therefore, interface tissue engineering has recently attracted significant attention from academia to be able to understand the mechanism of cell-materials interactions relevant to interfaces. This paper reviews the structure, composition and function of cartilage-bone interface in conjunction with the scaffold and cell options for its regeneration.","PeriodicalId":17539,"journal":{"name":"Journal of Tissue Science and Engineering","volume":"78 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2016-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Tissue Science and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4172/2157-7552.1000174","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Tissues with different material and biological properties are connected to one another through interfaces, which can be generally categorized as soft-to-soft tissue interfaces (muscle-tendon, etc.), softto-hard tissue interfaces (cartilage-bone, tendon-bone, etc.) and hardto-hard tissue interfaces (dentin-enamel, etc.). Since these interfaces merge biological materials, i.e., tissues, having distinct composition, structure and function, they possess complexities associated with their hierarchical structures, and when injured their healing/regeneration pathways follow more intricate phenomena compared to single tissues making up the interfaces. Findings reveal that injuries related to tissues connected in series occur mostly at the interfaces due to the mismatch between material properties of individual tissues. Therefore, interface tissue engineering has recently attracted significant attention from academia to be able to understand the mechanism of cell-materials interactions relevant to interfaces. This paper reviews the structure, composition and function of cartilage-bone interface in conjunction with the scaffold and cell options for its regeneration.