{"title":"Effectiveness of Pre-Trained Language Models for the Japanese Winograd Schema Challenge","authors":"Keigo Takahashi, Teruaki Oka, Mamoru Komachi","doi":"10.20965/jaciii.2023.p0511","DOIUrl":null,"url":null,"abstract":"This paper compares Japanese and multilingual language models (LMs) in a Japanese pronoun reference resolution task to determine the factors of LMs that contribute to Japanese pronoun resolution. Specifically, we tackle the Japanese Winograd schema challenge task (WSC task), which is a well-known pronoun reference resolution task. The Japanese WSC task requires inter-sentential analysis, which is more challenging to solve than intra-sentential analysis. A previous study evaluated pre-trained multilingual LMs in terms of training language on the target WSC task, including Japanese. However, the study did not perform pre-trained LM-wise evaluations, focusing on the training language-wise evaluations with a multilingual WSC task. Furthermore, it did not investigate the effectiveness of factors (e.g., model size, learning settings in the pre-training phase, or multilingualism) to improve the performance. In our study, we compare the performance of inter-sentential analysis on the Japanese WSC task for several pre-trained LMs, including multilingual ones. Our results confirm that XLM, a pre-trained LM on multiple languages, performs the best among all considered LMs, which we attribute to the amount of data in the pre-training phase.","PeriodicalId":45921,"journal":{"name":"Journal of Advanced Computational Intelligence and Intelligent Informatics","volume":"49 1","pages":"511-521"},"PeriodicalIF":0.7000,"publicationDate":"2023-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advanced Computational Intelligence and Intelligent Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20965/jaciii.2023.p0511","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
This paper compares Japanese and multilingual language models (LMs) in a Japanese pronoun reference resolution task to determine the factors of LMs that contribute to Japanese pronoun resolution. Specifically, we tackle the Japanese Winograd schema challenge task (WSC task), which is a well-known pronoun reference resolution task. The Japanese WSC task requires inter-sentential analysis, which is more challenging to solve than intra-sentential analysis. A previous study evaluated pre-trained multilingual LMs in terms of training language on the target WSC task, including Japanese. However, the study did not perform pre-trained LM-wise evaluations, focusing on the training language-wise evaluations with a multilingual WSC task. Furthermore, it did not investigate the effectiveness of factors (e.g., model size, learning settings in the pre-training phase, or multilingualism) to improve the performance. In our study, we compare the performance of inter-sentential analysis on the Japanese WSC task for several pre-trained LMs, including multilingual ones. Our results confirm that XLM, a pre-trained LM on multiple languages, performs the best among all considered LMs, which we attribute to the amount of data in the pre-training phase.