A fast search and classification method of isomorphic polygons in LSI design data using geometric invariant feature value

S. Shoji, A. Koyama
{"title":"A fast search and classification method of isomorphic polygons in LSI design data using geometric invariant feature value","authors":"S. Shoji, A. Koyama","doi":"10.1504/IJSSC.2016.082760","DOIUrl":null,"url":null,"abstract":"A large number of isomorphic polygons are included in design data of LSI. Fast search and classification for isomorphic polygons are expected for compactness and fast pattern search of design data. In this paper, we propose a high speed and high accuracy classification method of isomorphic polygons. The proposed method can reduce a shape comparison process significantly by using a geometric invariant feature value for a polygon. The feature value is calculated by summation of distance from centre of gravity to each vertex, and a polygon contour length. This value does not be affected by parallel shift, rotation and reduced scale. The feature value is same among isomorphic polygons and it is possible to access an isomorphic polygon group quickly by using this value. From evaluation results, we verified that the proposed method can realise fast classification for isomorphic polygons, and compactness of design data.","PeriodicalId":43931,"journal":{"name":"International Journal of Space-Based and Situated Computing","volume":"2 1","pages":"199-208"},"PeriodicalIF":0.0000,"publicationDate":"2016-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Space-Based and Situated Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJSSC.2016.082760","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

A large number of isomorphic polygons are included in design data of LSI. Fast search and classification for isomorphic polygons are expected for compactness and fast pattern search of design data. In this paper, we propose a high speed and high accuracy classification method of isomorphic polygons. The proposed method can reduce a shape comparison process significantly by using a geometric invariant feature value for a polygon. The feature value is calculated by summation of distance from centre of gravity to each vertex, and a polygon contour length. This value does not be affected by parallel shift, rotation and reduced scale. The feature value is same among isomorphic polygons and it is possible to access an isomorphic polygon group quickly by using this value. From evaluation results, we verified that the proposed method can realise fast classification for isomorphic polygons, and compactness of design data.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于几何不变特征值的LSI设计数据同构多边形快速搜索与分类方法
大规模集成电路的设计数据中包含了大量的同构多边形。对同构多边形的快速搜索和分类是设计数据的紧凑性和快速模式搜索的要求。本文提出了一种高速、高精度的同构多边形分类方法。该方法利用多边形的几何不变特征值,大大减少了形状比较过程。特征值由重心到每个顶点的距离和多边形轮廓长度的总和计算得到。该值不受平行移动、旋转和缩小比例的影响。同构多边形之间的特征值是相同的,利用该值可以快速访问同构多边形群。从评价结果来看,该方法能够实现同构多边形的快速分类和设计数据的紧凑性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Space-Based and Situated Computing
International Journal of Space-Based and Situated Computing COMPUTER SCIENCE, INFORMATION SYSTEMS-
自引率
0.00%
发文量
0
期刊最新文献
A hierarchical outlier detection method for spare parts transaction A multi-tiered spare parts inventory forecasting system GPS availability prediction based on air-ground collaboration Inventory Optimization based on NSGA-III Algorithm Data privacy and anonymisation of simulated health-care dataset using the ARX open source tool
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1