{"title":"The case for gas-phase astrochemistry without carbon","authors":"Ryan C. Fortenberry","doi":"10.1016/j.molap.2019.100062","DOIUrl":null,"url":null,"abstract":"<div><p><span><span>Most carbon in the Universe is tied up in carbon monoxide or in </span>polycyclic aromatic hydrocarbons<span>. Even so, a vast majority of the molecules detected in various astrophysical media contain at least one carbon atom in them. These could nearly all be classified as hydrocarbons. However, only a fraction of the atoms in the Universe heavier than helium are actually carbon. This review will explore the past astronomical detections of molecules that do not contain carbon and will discuss the present workings and future outlooks of pure, inorganic </span></span>astrochemistry. Such molecules have bonding structures that are often “atypical,” have notable spectroscopic intensities, and open the door for new chemical insights. Asking novel questions can lead to novel insights, and inorganic astrochemistry provides a strong motivation for asking the most creative chemical questions.</p></div>","PeriodicalId":44164,"journal":{"name":"Molecular Astrophysics","volume":"18 ","pages":"Article 100062"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.molap.2019.100062","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Astrophysics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405675819300375","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 14
Abstract
Most carbon in the Universe is tied up in carbon monoxide or in polycyclic aromatic hydrocarbons. Even so, a vast majority of the molecules detected in various astrophysical media contain at least one carbon atom in them. These could nearly all be classified as hydrocarbons. However, only a fraction of the atoms in the Universe heavier than helium are actually carbon. This review will explore the past astronomical detections of molecules that do not contain carbon and will discuss the present workings and future outlooks of pure, inorganic astrochemistry. Such molecules have bonding structures that are often “atypical,” have notable spectroscopic intensities, and open the door for new chemical insights. Asking novel questions can lead to novel insights, and inorganic astrochemistry provides a strong motivation for asking the most creative chemical questions.
期刊介绍:
Molecular Astrophysics is a peer-reviewed journal containing full research articles, selected review articles, and thematic issues. Molecular Astrophysics is a new journal where researchers working in planetary and exoplanetary science, astrochemistry, astrobiology, spectroscopy, physical chemistry and chemical physics can meet and exchange their ideas. Understanding the origin and evolution of interstellar and circumstellar molecules is key to understanding the Universe around us and our place in it and has become a fundamental goal of modern astrophysics. Molecular Astrophysics aims to provide a platform for scientists studying the chemical processes that form and dissociate molecules, and control chemical abundances in the universe, particularly in Solar System objects including planets, moons, and comets, in the atmospheres of exoplanets, as well as in regions of star and planet formation in the interstellar medium of galaxies. Observational studies of the molecular universe are driven by a range of new space missions and large-scale scale observatories opening up. With the Spitzer Space Telescope, the Herschel Space Observatory, the Atacama Large Millimeter/submillimeter Array (ALMA), NASA''s Kepler mission, the Rosetta mission, and more major future facilities such as NASA''s James Webb Space Telescope and various missions to Mars, the journal taps into the expected new insights and the need to bring the various communities together on one platform. The journal aims to cover observational, laboratory as well as computational results in the galactic, extragalactic and intergalactic areas of our universe.