Memory Capacity of Neural Networks with Threshold and Rectified Linear Unit Activations

IF 2.6 Q1 MATHEMATICS, APPLIED SIAM journal on mathematics of data science Pub Date : 2020-10-20 DOI:10.1137/20m1314884
R. Vershynin
{"title":"Memory Capacity of Neural Networks with Threshold and Rectified Linear Unit Activations","authors":"R. Vershynin","doi":"10.1137/20m1314884","DOIUrl":null,"url":null,"abstract":"Overwhelming theoretical and empirical evidence shows that mildly overparametrized neural networks---those with more connections than the size of the training data---are often able to memorize the ...","PeriodicalId":74797,"journal":{"name":"SIAM journal on mathematics of data science","volume":"19 1","pages":"1004-1033"},"PeriodicalIF":2.6000,"publicationDate":"2020-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"41","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM journal on mathematics of data science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/20m1314884","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 41

Abstract

Overwhelming theoretical and empirical evidence shows that mildly overparametrized neural networks---those with more connections than the size of the training data---are often able to memorize the ...
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有阈值和整流线性单元激活的神经网络的记忆容量
大量的理论和经验证据表明,轻度过度参数化的神经网络——那些连接数量超过训练数据规模的神经网络——通常能够记住……
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Supervised Gromov-Wasserstein Optimal Transport with Metric-Preserving Constraints. Entropic Optimal Transport on Random Graphs A Universal Trade-off Between the Model Size, Test Loss, and Training Loss of Linear Predictors Approximating Probability Distributions by Using Wasserstein Generative Adversarial Networks Adversarial Robustness of Sparse Local Lipschitz Predictors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1